

Electrical characterization and polarization effect of the ultra fast heteroepitaxial diamond detectors

Contributing...

- E. Berdermann
- A. Ciobanu
- ♣ M. Traeger
- M. Schreck
- ♣ C. Stehl,
- Detector Laboratory, GSI
- ✤ Target Laboratory, GSI

Outlines

- Introduction
- Electrical and Electronic Properties
- Polarization and Memory Effects
- Conclusions

Diamond Detectors

Diamond

Diamond Detectors

11-13 December 2011

3rd CARAT Workshop, GSI

I-E characteristics DoI Detectors

I-E characteristics CVDD Detectors

Electrical Conductivity

Conduction Mechanism (SCLC)

type: sc CVD-DD, Dol DD contact: AI, Ti/Pt/Au, AI/DLC-Dia

theory of SCLC

$$I_{Child} = \frac{9}{8} \mu \varepsilon \frac{V^2}{d^3}$$
$$I_{TFL} = \frac{9}{8} \mu \varepsilon \theta \frac{V^2}{d^3}$$

Here,

 μ electronic mobility, V applied bias d thickness, ε dielectric constant

 $\theta = \frac{free_Carrier_Density}{Total_Carrier_Density}$

Effect of metalization on DoI

I-V characteristics at higher temp (>RT)

11-13 December 2011

E^{ac} of DoI & sc-CVDD

Charge Collection Efficiency (CCE) of CVDD

CCE of 3 different CVDDs

CCE of different DoI Detectors

The improvement of the CCE in Dol could be due the of the materials quality

11-13 December 2011

CCE and energy resolution of DoI

Polarization effect in DoI detectors

3rd CARAT Workshop, GSI

Polarization effect in DoI detectors

Polarization effect in <u>different CVDD detectors</u>

polarization effect is more in pc-CVDD and Dol lies between pcand sc-CVDD detectors.

Polarization is effect are due the defects in the bulk of the diamonds

In term of the polarization effect the Dol behaves as 'quasi' sc CVDD detectors

CCE of 3 different CVDDs

Memory effect in DoI detectors

negative bias (1V/µm)

Dol 886-2 (320µm)

11-13 December 2011

3rd CARAT Workshop, GSI

Memory effect in DoI detectors

negative bias (1V/µm)

Dol 886-2 (320µm)

11-13 December 2011

3rd CARAT Workshop, GSI

Memory effect in DoI detectors

negative bias (2V/µm)

Dol 886-2 (320µm)

11-13 December 2011

3rd CARAT Workshop, GSI

Memory effect in different CVDD detectors

memory effect is more in pc-CVDD

In both bias condition the memory effect is similar in Dol detectors while this effect is varying in pc-diamond.

However in sc-CVDD detectors no such phenomenon is observed.

bias (>1V/µm)

CCE of 3 different CVDDs

Summaries

• Electrical (*I-V*) characteristics of scCVDD and Dol detectors are analyzed; the dark current of Dol samples is by one order magnitude lower than the current observed with scCVDD.

• The main dark current conductivity in scCVDD detector is SCLC and Dol is Space Charge Limited Conduction (SCLC) and E^{ac} is 0.37~0.39eV. While for Dol the *Eac* is (1.03~1.32)eV

• The CEE of Dol is improved with the new DOl samples $(11\% \rightarrow 93\%)$ also the energy resolution $(18\% \rightarrow 4\%)$

• The polarization effect is observed in Dol which lies between pcCVDD and scCVDD at positive bias while at neg. bias (V) the memory effect is visible.

Thank you for your attention