

Diamond based detectors for timing applications in HADES

Jerzy Pietraszko^a, W. Koenig^b

for the HADES Collaboration

^a Institut für Kernphysik, Goethe-Universität, Max von Laue Strasse 1, D-60438 Frankfurt, Germany ^b GSI Helmholtz Centre for Heavy Ion Research GmbH Planckstrasse 1, D-64291 Darmstadt, Germany

Acknowledgements

For the preparation of the detectors, metallization and bonding of the diamonds we highly appreciate the support of E. Berdemann, <u>M. Träger et</u> al., GSI Detector Laboratory and A. Hübner et al., GSI Target Laboratory.

Outlook

Heavy ion program Au +Au @ 1.25 AGeV

Planned experiment in 2012: reaction Au +Au @ 1.25 AGeV, 4-5 weeks.

Start detector issues: Radiation hardness, time resolution and efficiency. Test in Nov 2010 (20 hours of beam) – reported during 2nd CARAT Workshop Test in Aug 2011 (5 days of beam) – this presentation

Proton and pion induced reactions – short summary

Why do we need the Start detector:

- Beam position monitoring.
- Start signal for Time-of-Flight measurement.
- Fast trigger signal for Data Acquisition System.
- \rightarrow Position sensitive, fast detector, directly in front of the target.
- \rightarrow Included in the LVL1 trigger. Selecting beam particles which hit the target.
- \rightarrow Time resolution: below 50 ps.
- \rightarrow Efficiency: close to 100 %.
- \rightarrow Fast readout electronics

The HADES detector at GSI

http://www-hades.gsi.de π 10 d.⁴He 0 counts/(2 MeV/c² 1**0**` w/o cuts 0' 10⁵ w/o MDC dE/dx cut 10² 10 TOF all cuts 1000 2000 3000 0 polarity * (mass/Z) [MeV/c²] 2000 pp@3.5 GeV velocity RPC Au+Au 2 1800 dN/dM_{ee} [Counts] **ToF measurement** 1600 50 $\omega \rightarrow e^{-}$ essential part of 1400 1200 0.8 $\sigma_{\rm M}(\omega) \cong 2.0\%$ particle identification 1000 0.6 800 600 (T0 determination) 0.4 400

→diamond detector

0.2

3

0.9 0.95

Mee [GeV/c²]

HADES

HADES Start-Veto system (Au+Au)

Detector properties:

- ✓ Low material budget (low interaction probability), good time resolution (below 50 ps)
- \checkmark In vacuum operation, located directly in front of the target in order to reduce load on the RICH
 - → Start det.: monocrystalline diamond, 50 μ m thickness, 4.7mm x 4.7mm
 - \rightarrow Veto det.: polycrystalline diamond, 100 µm thickness, behind the RICH Detector.

HADES Start-Veto system (Au+Au)

→ Start det.: monocrystalline diamond, 50 μ m thickness, 4.7mm x 4.7mm → Veto det.: polycrystalline diamond, 100 μ m thickness, behind the RICH Detector.

Start-Veto system readout electronics

Issues:

- ✓ High rate, up to 10^7 /s per channel.
- ✓ Fast signals, analog signal from diamond 200 ps rise time, base width < 1ns.

Our approach:

- ✓ Dedicated NINO based discriminator board with trigger functionality.
- ✓ Time measurement performed by HADES TRB board based on HPTDC.

8 x LVDS timing output signals

<u>NINO chip:</u> Developed for Time-of-flight measurements in the ALICE experiment

Key features:

- ✓ Adjustable discriminator thresholds.
- ✓ Front end time jitter <10ps.
- ✓ Sustains very high rate (>>10MHz)
- ✓ Peaking time: 1ns.
- ✓ Input signal range: 30fC 2pC.
- ✓ Noise: <2500 e-.
- ✓ Discriminator threshold: 10fC 100fC.
- ✓ Timing precision: <10ps jitter.
- ✓ Output: LVDS.

The Multipurpose Trigger Readout Board TRB

TRB Board:

- **4 TDC 128 channels (HPTDC)**, 4x512Mb SDRAM, FPGA Virtex4LX40, ETRAX, FS – 4 processors, 100Mb/s,TCP/IP, 2,5 Gb/s optical link, DSP TigerSharc, DC/DC converters, AddOn connector
 - → Time, ToT, 96ps/bin 128 channels
 - → Time, ToT, 25ps/bin 32 channels
 - → Rate capability: up to 3 MHz per channel

Pulser test signal sent to 8 channels.

✓ Individual INL corrections for each channel

 \rightarrow All 32 channels show RMS below 25ps/1.4 = 17.8 ps

-100

0

Time1 - Time2 [channel]

-200

Start-Veto system – test with Au beam (Nov 2010)

HADES

6

2

Setup and conditions:

- ✓ Start det.: monocrystalline diamond, 50 μ m thickness, HV set to 200 V
- \checkmark Veto det.: polycrystalline diamond, 100 μ m thickness, HV set to 200 V.
- ✓ Beam particles intensity: 10^6 /s per channel.

Start-Veto system test with Au beam (Nov 2010)

Setup and conditions:

- \checkmark Start det.: monocrystalline diamond, 50 μ m thickness, HV set to 200 V
- \checkmark Veto det.: polycrystalline diamond, 100 μ m thickness, HV set to 200 V.
- ✓ Beam particles intensity: 10^6 /s per channel.

One channel with "walk" correction – 32 ps

6

2

3

4.7mm

4

Start detector

Start-Veto system test with Au beam (Nov 2010) stability problem !

Setup and conditions:

- \checkmark Start det.: monocrystalline diamond, 50 µm thickness, HV set to 200 V.
- \checkmark Veto det.: polycrystalline diamond, 100 μ m thickness, HV set to 200 V.
- ✓ Beam particles intensity: 10^6 /s per channel.

Long term stability problem - raising current

- \checkmark Effect clearly visible after 2-3 hours of continuous Au beam with intensity 10⁶/s
- ✓ Visible for Start and Veto (mono and poli-crystalline material)

Time	Start current in spill	Start current off spill	Veto current in spill	Veto current off spill
10:00	2.5 μΑ	0.00 μΑ	2.6 μΑ	0.00 μΑ
11:39	2.5 μΑ	0.09 μΑ	2.6 μΑ	0.04 μΑ
12:01	1.4 μΑ	0.88 μΑ	1.8 μA	0.20 μΑ
12:41	2.2 μΑ	0.88 μΑ	2.4 μΑ	0.40 μΑ
•••				

 \rightarrow strong dependence on the HV observed: example: 200 V – 0.25 μ A

 $150~V-0.08~\mu A$

4-5 weeks of Au+Au production run in HADES !!!!

GOETHE Start-Veto system – test with Au beam, UNIVERSITÄT Working point determination with Alpha

source

J.Pietraszko, 3rd CARAT Workshop, GSI Dec. 11-13, 2011

HV reduced by a factor of 4 (200 V \rightarrow 50 V) - the time resolution below 50 ps

→ expected stable long term operation during high intensity HI run ! J.Pietraszko, 3rd CARAT Workshop, GSI Dec. 11-13, 2011

but five days with Au beam (Au 2011) and

13

Dismounted Start detector:

FRANKFURT AM MAIN

M. Träger, GSI Det.Lab

J.Pietraszko, 3rd CARAT Workshop, GSI Dec. 11-13, 2011

Surface (metallization) damage ?

Electron microscope

GSI Target.Lab

Beam spot 0.8x1.6 mm² → 1.28 mm²

<u>X-ray Microanalysis (EDX)</u>

No damage to the Au metalization surface visible !!!

14

J.Pietraszko, 3rd CARAT Workshop, GSI Dec. 11-13, 2011

... but five days with Au beam (Au 2011) and ...

+ 30 % DAQ off + 30 % beam times in 2010

→ 3.04 x 10¹¹ Au ions / 1.28 mm²

\rightarrow 2.37 x 10¹¹ Au ions / mm²

ADC spectra: Pu239 - Am241 - Cm244 in vacuum (5.157 MeV, 5.486 MeV, 5.804 MeV)

Start detector efficiency determination

- ✓ Start detector included in 1st Level Trigger !!! can not be used for efficiency estimation
- \checkmark 8 channels of Start and 8 channels of Veto detector,
- \checkmark TDC with multi-hit capability
 - \rightarrow minimum bias trigger T>50ns

Beam position monitoring

→Precise position information

Start detector efficiency determination

GOETHE

→ Strong eff. changes correlated with shifts in beam position !!

→Strong eff. changes correlated with shifts in beam position !!

Start detector time resolution (after 0.70 x 10¹¹ Au ions / mm²)

✓ Strange ToT distributions

 \checkmark improved time res. after walk corr.

91 (65ps) \rightarrow 58 (41ps)82 (58ps) \rightarrow 47 (33ps)70 (50ps) \rightarrow 49 (35ps)73 (52ps) \rightarrow 66 (47ps)

J.Pietraszko, 3rd CARAT Workshop, GSI Dec. 11-13, 2011

Start detector time resolution (after 2.37 x 10¹¹ Au ions / mm²)

→ poor time res. after walk correction. contribution from Veto Detector (pcCVD) ? To be checked

21

J.Pietraszko, 3rd CARAT Workshop, GSI Dec. 11-13, 2011

Start-Veto system for HADES pion/proton experiment (MIPs)

Experimental conditions and requirements for HADES pion experiment:

- ✓ Secondary pion beam, mom.=1GeV/c (MIPs) → scCVD
- ✓ Demanding beam particles intensity $>10^6$ pions/sec
- ✓ Secondary beam. Beam spot diameter 1-2 cm → Large area moncrystaline diamond
- ✓ Timing signal for Tof measurement and for trigger 50 ps time resolution

Prototype: 4.7 mm x 4.7 mm, monocrystalline: used for proton induced reactions

Start-detector for MIPs – test with p beam

Juelich proton beam, 2.95 GeV:

- ✓ Two Start det.: monocrystalline diamond, 500 µm thickness, 4.7mm x 4.7mm, with halo functionality, 50nm Cr/150nm Au metallization.
- ✓ Stable operation at intensities > 10⁶ protons/ s/channel, BEST TIME RES = 100 ps, expected 50ps

GOETHE UNIVERSITÄT FRANKFURT AM MAIN

Summary and outlook

- $\checkmark\,$ Segmented diamond based sensors for HI and MIPs beam tested.
- ✓ Single particle detection at beam intensities above 10^{6} /mm²/s with time resolution < 50ps (HI)
- ✓ Stable operation for MIPs at intensities $> 10^{6}$ protons/ s/channel, time res. 100 ps,

But:

 \otimes Significant radiation damage at Au beam above 10^{11} Au ions/mm², under investigation.

In preparation:

✓ New metalization ready, test with Am source

A High-Resolution (< 10 ps RMS) Multi-Channel Time-to-Digital Converter (TDC) Implemented in a

- ✓ Double-sided multi-strip diamond based sensor for HI (16 channels on each side)
- ✓ Precise charge measurement of fast signals \rightarrow see W.Koenig's talk
- ✓ New generation of TDC will be available soon (TDC in FPGA)

Diamond sensor, 16 stripes on each side

Real Time Conference (RT), 2010 17th IEEE-NPSS

J.Pietraszko, 3rd CARAT Workshop, GSI Dec. 11-13, 2011

J.Pietraszko, 3rd CARAT Workshop, GSI Dec. 11-13, 2011

GOETHE

AM MAIN

