

Particle detection with sCVD and Si at LHe temperatures

Outline

- Introduction
 - LHC Beam Loss Monitoring
 - CryoBLM project
- Beam test measurement setup
- Beam characteristics
- Single particle mode
- DC measurements
- Conclusions and outlook

LHC Beam Loss Monitoring

- Purpose: damage and quench protection of sensitive elements (e.g. magnets and collimators)
- Method: measurement of secondary shower particles from beam losses
- Detectors: Ionisation chambers, Secondary Emission Monitors and Diamonds
- Fastest active machine protection system

BLM issue close to interaction regions

 Problem: in triplet magnets signal from debris with similar height as simulated beam losses in steady state case

Cryogenic BLM as solution

- Future BLMs placed closer to:
 - where losses happen and
 - the element needing protection (so inside cold mass of the magnet, 1.9 K)
- Measured dose then better corresponds to dose inside the coil

Specifications for CryoBLM

- Present conditions:
 - low temperature of 1.9 K (superfluid Helium)
 - radiation of about 1 MGy in 10 years
 - magnetic field of 2 T
 - pressure of 1.1 bar, withstanding a fast pressure rise up to about 20 bar
- Main contribution to radiation field comes from:
 - neutrons and
 - photons, but also charged particles are expected.
- Linearity between 0.1 and 10 mGy/s
- Detector response faster than 1 ms
- Stability, reliability and availability: after installation no access possible

Investigated detectors

- Silicon
 - Successfully used at 1 K at CERN already
- Diamond (sCVD)
 - Successfully in use as LHC BLM at RT
- Liquid helium ionisation chamber
 - + No radiation hardness issue
 - Slow (e-bubbles)

Beam test area

Semiconductors holder from Vladimir Eremin

Optical fibers for TCT with Si

Stainless steel cables for low heat introduction

- 4 Silicon detectors
- 1 single crystal diamond (sCVD)

Inside cryostat - detectors

Inside cryostat

Cable length between detectors and preamplifiers ~ 2 m

Due to long cables advantage of no noise at LHe temperatures is partly lost.

T9 Beam characteristics

- Beam generated by directing PS beam onto target
- Particles consist of protons (dominating), positive pions and kaons
- 10 GeV/c particles
- Beam intensity 350 000 particles/spill
- Size at focus about 1 cm²
- Spill duration of 400 ms (about 875 particles/ms)
- One spill every 45 s

Single Particle detection

40 dB current amplifier from CIVIDEC (see also Erich Griesmayers talk)

R

Idet

R

Idet

I 3 eV/eh-pair

18'000 eh-pairs per MIP

Oscilloscope trigger level

The following analysis might:

- contain pulses from noise peaks or
- have a bias due to triggering

Diamond results Single particle (response averaged from ~5000 pulses)

Voltage scan with 4 mV trigger

Temperature comparison with 6 mV trigger

Diamond results at 4.2 K, 400 V Single particle detection

Estimated: 3.79 fC (difference might be due to trigger level)

Silicon results Single particle (response averaged from ~5000 pulses)

Voltage scan with 4 mV trigger

Temperature comparison with 6 mV trigger

Silicon results at 4.2 K, 100 V Single particle detection

Estimated: 5.68 fC

Electronic setup for DC measurements (preferred for final BLM application)

Charge collection comparison

- Main contribution to error bars from beam intensity uncertainty
- Ratio between sCVD and Si as expected

- All tested detectors work at superfluid helium temperatures
- Not fully understood:
 - "Avalanche" pulses
 - Diamond polarization at 1.9 K
- Critical missing information:
 - Radiation hardness of semiconductors at 1.9 K (tests in 2012)
- Ongoing analysis of the beam test data
- In parallel further measurements done in the laboratory:
 - Silicon (TCT) charge generation with laser and alpha source
 - sCVD (TCT) charge generation with alpha source

CARAT workshop December 2011

21 / 26

- All tested detectors work at superfluid helium temperatures
- Not fully understood:
 - "Avalanche" pulses
 - Diamond polarization at 1.9 K
- Critical missing inform
 - Radiation hardnes: \(\frac{\x}{3} \)
- Ongoing analysis of the
- In parallel further mea laboratory:
 - Silicon (TCT) charç alpha source
 - sCVD (TCT) charg

- All tested detectors work at superfluid helium temperatures
- Not fully understood:
 - "Avalanche" pulses
 - Diamond polarization at 1.9 K
- Critical missing information:

ardness of semiconductors at 1.9 K sis of the beam test data er measurements done in the

- Γ) charge generation with laser and:e
-) charge generation with alpha source

- All tested detectors work at superfluid helium temperatures
- Not fully understood:
 - "Avalanche" pulses
 - Diamond polarization at 1.9 K
- Critical missing information:
 - Radiation hardness of semiconductors at 1.9 K (tests in 2012)
- Ongoing analysis of the beam test data
- In parallel further measurements done in the laboratory:
 - Silicon (TCT) charge generation with laser and alpha source
 - sCVD (TCT) charge generation with alpha source

● All tested detectors v 등 0.15 temperatures

- "Avalanche" pulse
- Diamond polariza
- Critical missing information
 - Radiation hardne
- Ongoing analysis of

- In parallel further measurements done in the laboratory:
 - Silicon (TCT) charge generation with laser and alpha source
 - sCVD (TCT) charge generation with alpha source

Acknowledgements Thank you!!!

- Vladimir Eremin for semiconductors holder and general help in many ways
- Thomas Eisel and his team for cryogenics
- Jaakko Haerkoenen for instruments, hints and discussions
- Erich Griesmayer for CIVIDEC electronics and many practical hints
- Heinz Pernegger for analysis program and the sCVD
- Hendrik Jansen for material and discussions
- Mariusz Sapinski for continuous support in many ways
- Bernd Dehning for sending me to this workshop and his help in many ways

Signal Estimation

Estimations done with:

- Stopping power of material P_{stop}
- Density of material ρ
- Electron-hole Pair creation energy E_{pair}
- Dimensions of detector (active area A_{active} and length I)
- Beam characteristics (beam size A_{beam}, number of particles n_p and spill duration)

• Charge per particle:

- Liquid helium: 12.2 fC
- sCVD: 3.79 fC
- Si: 5.68 fC

Charge per spill:

- Liquid helium: 3.66 nC
- sCVD: 182 pC
- Si: 426 pC

$$Q = \frac{P_{stop} \cdot \rho \cdot l}{E_{pair}}$$

$$Q_{spill} = \frac{P_{stop} \cdot \rho \cdot l}{E_{pair}} \cdot n_p \cdot \frac{A_{active}}{A_{beam}}$$

Signal Estimation

(Check done to see if signals measurable)

Estimated collected charge from T9 beam

Estimated currents from particles:

LHe chamber: 9.14 nA

• sCVD: **454 pA**

• Si: **1.07 nA**

Comparison sCVD and Si Single particle detection

For single particle detection, more charge observed for sCVD than for Si. This might come from the trigger settings.