TCT studies with scCVD diamonds at cryogenic temperatures

<u>H. Jansen</u>¹, D. Dobos¹, H. Pernegger¹, N. Wermes², V. Eremin³

¹ CERN
 ² University of Bonn
 ³ Ioffe Physical-Technical Institute

- Idea and motivation for cryogenic diamond Beam Loss Monitors (BLMs) for the LHC
- Details of measuring set-up for diamond characterization via TCT
- The Plasma Effect for heavy ionizing particles in scCVD diamonds
- Raw measurements and derived charge-carrier properties for scCVD diamonds
- Conclusion

Idea and Motivation

- Place BLMs as close to the beam as possible
 → Detector operation at 1.9 K, within the cold mass
- Choose detector material

 → Candidates are: CVD diamond, silicon, liquid He
- Diamonds not tested yet at ultra-cold temperatures
 - → Interesting!

 Characterize scCVD diamonds at cryogenic temperatures with gaseous He cooling

 \rightarrow Start at RT, decrease step-wise down to 67 K with liquid He cooling

 \rightarrow Measure down to 4.5 K

Why Diamond

Pros:

- High band gap (5.5 eV)
 - → Very high breakdown field > 1e7 V/cm
 - → Very high resistivity > 1e11 Ω cm
 - → Very low leakage current \leq 1 pA
- Low dielectric constant (5.7)
 - → Low capacitance
 - → Low noise
- High displacement energy (43 eV/atom)
 - \rightarrow Radiation hard

≻ High pair creation energy (13.5 eV)
 → Less signal (but less noise!)

Details of Measuring Set-up

- The Transient-Current Technique (TCT) measurement:
 - → measure the transient current
 - 1) α particles impinge on top side
 - 2) Create eh-pairs close to electrode
 - 3) Electric field separates charges
 - 4) Drifting charges induce current
 - \rightarrow Pos. (neg.) bias \rightarrow Measure e⁻ (h⁺)
 - \rightarrow Use ultra-fast 2 GHz, 40 dB, 200 ps rise time current amplifier (cividec)
 - \rightarrow Use broad-band 3 GHz scope (LeCroy)
 - → Use RF components

Details of Measuring Set-up

• SETTINGS:

- → TCT in vacuum
- → Temp: 67 K 300 K, bias \leq 600 V
- → Read-out from HV-side
- → Use collimator (avoid edge-effects)

TCT and the Plasma Effect

12/12/2011

H. Jansen - 3rd Carat WS - TCT

Plasma Effect at 295 K

ÉRN

Difficulties

12/12/2011

H. Jansen - 3rd Carat WS - TCT

TCT Hole Pulses

TCT Hole Pulses

Trapping in Plasma

Below ~150 K:

- Field-free region within plasma cloud

 → immediate trapping and increased
 recombination (or creation of excitons?!)
- Detrapping if E_{trap} / kT large enough
- Distinguish 2 types of trapping!

$$au_{trap}^{plasma} \ll au_{trap}^{drift}$$

From Ramo-Theorem: $i_{(t)} = i_{not-trapped}(t) + i_{released}(t)$ $= \frac{e}{d} \sum_{i, not-trapped} v_i(t-t_i^{start})$ $+ \frac{e}{d} \sum_{i, released} v_i(t-t_i^{detrap});$ $Q_{released}(t) =$ $Q_{trapped}(1 - \exp(-t/\tau_{detrap}));$

Trapping/Detrapping at 110 K

Trapping/Detrapping at 80 K

12/12/2011

Analysis of TCT Pulses

Four phases:

- Fit Erfc(t) to rising/falling edge:
 - \rightarrow 50% levels mark start/end time
 - \rightarrow Derive drift mobility and velocity
- Fit $1 \exp(-t/\tau_p)$ to saturation:
 - $\rightarrow \tau_n$ is plasma lifetime

30

- Fit $exp(-t/\tau)$ to tail:
 - \rightarrow Tail formed by cable effects, amplifier bandwidth limits, diffusion

Hole Mobility and Velocity

- Mobility μ_h and avg. drift velocity $\langle v_{drift} \rangle$ at RT as expected
- μ_h increases down to 67 K ($\rightarrow \langle v_{drift} \rangle$ increases as well) \rightarrow no onset of impurity scattering
- $v_{sat} \sim constant$ with temperature

Hole Mobility and Velocity

- Mobility μ_h and avg. drift velocity $\langle v_{drift} \rangle$ at RT as expected
- μ_h increases down to 67 K ($\rightarrow \langle v_{drift} \rangle$ increases as well) \rightarrow no onset of impurity scattering
- $V_{sat} \sim constant$ with temperature

Integrated Charge

- Charge constant in range 140 K to 300 K
- Steep drop from 140K down to 67 K

12/12/2011

 $\rightarrow\,$ plasma associated trapping and recombination

New data taken with LiHe cooling!

Detrapping Time Constant

inv. Temp in 1/K

• Plot $ln(\tau_{dt})$ vs 1/T, do line fit:

 $E_{\rm trap}^{\rm h} \approx 40 \,{\rm meV} \pm 10 \,{\rm meV}$

- → lowest shallow trap
- \rightarrow investigate further energy levels of traps via Thermally Stimulated Current technique

12/12/2011

Conclusion

- TCT offers eminent possibility to characterize detectors
- Temperature dependence of
 - drift mobility and velocity
 - total charge
 - trapping-detrapping mechanism
 - pulse shape
 - in scCVD diamonds
- Total charge drops for T < 150 K, need to understand this

trapping? recombination? formation of excitons?

Use charge-sensitive amplifier here

- Charge degradation much less with MIPs

 lower charge density!
- See next talk (C. Kurfuerst)

- Paper in preparation
- Simulate pulse shapes including plasma effect and trapping-detrapping mechanism

• TCT with β-source (this spring)

- \rightarrow test MIP-like signal with diamond
- \rightarrow density of charge cloud much smaller
- \rightarrow cleaner measurement than with test-beam
- TCT with irradiated samples
 - \rightarrow compare scCVD diamond with Si detectors
 - \rightarrow expect better performance for scCVDs!
- Cryogenic TSC set-up in preparation
 - \rightarrow resolve shallow traps

BACKUP SLIDES

12/12/2011

H. Jansen - 3rd Carat WS - TCT

page 24

Bragg curve simulator

12/12/2011

H. Jansen - 3rd Carat WS - TCT

Pulse Shape for Constant Voltage

CÉRN

$$+\frac{e}{d}\sum_{i, released} v_i(t-t_i^{detrap}); \qquad \qquad Q_{not-trap}$$

$$_{not-trapped} = Q_{\alpha-induced} - Q_{trapped}$$

$$Q_{released}(t) = Q_{trapped}(1 - \exp(-t/\tau_{detrap}));$$

Detrapping vs. T

12/12/2011

H. Jansen - 3rd Carat WS - TCT

Band width

12/12/2011

H. Jansen - 3rd Carat WS - TCT