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Outline

Idea and motivation 
for cryogenic diamond Beam Loss Monitors (BLMs) for the LHC

Details of measuring set-up
for diamond characterization via TCT

The Plasma Effect
for heavy ionizing particles in scCVD diamonds

Raw measurements and derived charge-carrier properties
for scCVD diamonds

Conclusion
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Idea and Motivation

Place BLMs as close to the beam as possible
→ Detector operation at 1.9 K, within the cold mass

Choose detector material
→ Candidates are: CVD diamond, 
silicon, liquid He

Diamonds not tested yet at 
ultra-cold temperatures
→ Interesting!

Characterize scCVD diamonds at cryogenic temperatures
with gaseous He cooling
→ Start at RT, decrease step-wise down to 67 K
with liquid He cooling
→ Measure down to 4.5 K

““Diamonds Diamonds 
Are a Girl's Are a Girl's 
Best Friend!”Best Friend!”
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Signal-to-Noise ratioSignal-to-Noise ratio
 is what counts! is what counts!

Diamond Diamond 
compatible with siliconcompatible with silicon

Why Diamond

Pros:

➢ High band gap (5.5 eV)
→ Very high breakdown field > 1e7 V/cm
→ Very high resistivity > 1e11 Ωcm
→ Very low leakage current  1 pA≲

➢ Low dielectric constant (5.7)
→ Low capacitance

→ Low noise

➢ High displacement energy (43 eV/atom)
→ Radiation hard

Cons:

➢ High pair creation energy (13.5 eV)
→ Less signal (but less noise!)
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Details of Measuring Set-up

The Transient-Current Technique (TCT) measurement: 

→ measure the transient current 
1) α particles impinge on top side
2) Create eh-pairs close to electrode
3) Electric field separates charges
4) Drifting charges induce current

→ Pos. (neg.) bias → Measure e- (h+)
 
→ Use ultra-fast 2 GHz, 40 dB, 
200 ps rise time current amplifier (cividec)

→ Use broad-band 3 GHz scope (LeCroy)

→ Use RF components 
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Details of Measuring Set-up

SETTINGS:
 

→ TCT in vacuum
→ Temp: 67 K - 300 K,  bias ≤ 600 V
→ Read-out from HV-side
→ Use collimator (avoid edge-effects)
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TCT and the Plasma Effect

FACTS:
 

→ αs produce high density charge cloud
→ Outer charges screen inner ones

→ E-Field decreases inside the plasma
→ Increased E-Field decreases lifetime of plasma

cloud≈
3⋅105 pairs

3 m
2
10 m

≈1015 cm−3

i t =∑k
ik t 

                    =∑k
e Ew vk  t 

                    =
e
d
∑k

vk t−t k
start

 ;

            vk t =0 for t0

From Ramo-Theorem:
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Plasma Effect at 295 K

plasma
phase

pure drift 
phase

collection 
phase

τ
plasm

a

start of
drift

Clear evidence 
for plasma effect

at room temp.
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Difficulties

Average pulses!
S2N much worse 
for single pulse!

Difficult to further 
decrease voltage
as S2N decreases!
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TCT Hole Pulses

295 K 150 K

110 K 80 K
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TCT Hole Pulses

295 K 150 K

110 K 80 K

What does explain
both features?
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Trapping in Plasma

Below ~150 K:

Field-free region within plasma cloud 
→ immediate trapping and increased 
recombination (or creation of excitons?!)

Detrapping if E
trap

 / kT large enough

Distinguish 2 types of trapping!

it =inot−trapped t ireleased t 

        =
e
d
∑i , not−trapped

v it−t i
start



        
e
d
∑i , released

v it−t i
detrap

;

Qreleasedt =
Qtrapped 1−exp −t / detrap;trap

plasma
≪trap

drift

From Ramo-Theorem:
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Trapping/Detrapping at 110 K

Detrapping time 
few ns
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Trapping/Detrapping at 80 K

Detrapping time 
~10 ns
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t
c

50% 50%

Analysis of TCT Pulses

Four phases:

1) Start of drift
2) Current saturation
3) Collection at electrode
4) Tail

Fit Erfc(t) to rising/falling edge:
→ 50% levels mark start/end time
→ Derive drift mobility and velocity

Fit 1-exp(-t/τ
p
) to saturation:

→ τ
p
 is plasma lifetime

Fit exp(-t/τ) to tail:
→ Tail formed by cable effects, 
amplifier bandwidth limits, diffusion

FLAT TOP
→ const. E!

x

E
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Hole Mobility and Velocity

v dr=
 0 E

1
0 E
vsat

Fits yield:

Mobility μ
h 
and avg. drift velocity <v

drift
> at RT as expected

μ
h
 increases down to 67 K (→ <v

drift
> increases as well)

→ no onset of impurity scattering

v
sat

 ~ constant with temperature

0,h
295 K=2278±110 cm2/Vs

v sat
295 K=11.8⋅106±0.8⋅106 cm /s

 0,h
67K

=7300±1850 cm2
/Vs

v sat
67 K=13.4⋅106±1.4⋅106 cm /s
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ci
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m
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Hole Mobility and Velocity
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Fits yield:
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Mobility μ
h 
and avg. drift velocity <v

drift
> at RT as expected

μ
h
 increases down to 67 K (→ <v

drift
> increases as well)

→ no onset of impurity scattering

v
sat

 ~ constant with temperature
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Integrated Charge

Charge constant in range 140 K to 300 K

Steep drop from 140K down to 67 K
→ plasma associated trapping and recombination

Sanity check:
corrected charge = 50 fC
4.6 MeV alpha (coating of source!)
→ Pair creation energy = 14.7 eV
→ Literature: 13.5 eV

→ OK
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Integrated charge

New data taken with LiHe cooling!
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Detrapping Time Constant

 detrap=
e

Etrap

kBT

 N v th T 

Plot ln(τ
dt
) vs 1/T, do line fit:

 
→ lowest shallow trap
→ investigate further energy levels of traps via
Thermally Stimulated Current technique

E trap
h

≈40 meV±10 meV

inv. Temp in 1/K

2nd trap at 
shallower level?

Perform cryoTSC 
to resolve 

shallow traps
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Conclusion

TCT offers eminent possibility 
to characterize detectors

Temperature dependence of 
- drift mobility and velocity
- total charge
- trapping-detrapping mechanism
- pulse shape
in scCVD diamonds

Total charge drops for T < 150 K,
need to understand this

trapping? recombination?
formation of excitons?



12/12/2011 H. Jansen   -   3rd Carat WS   -   TCT page 22page 22page 22

Cosmic Muons in scCVD

Use charge-sensitive amplifier here

Charge degradation much less with MIPs 
- lower charge density!

See next talk (C. Kurfuerst)

preliminary
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Outlook

Paper in preparation

Simulate pulse shapes 
including plasma effect and trapping-detrapping mechanism

TCT with β-source (this spring)
→ test MIP-like signal with diamond
→ density of charge cloud much smaller
→ cleaner measurement than with test-beam 

TCT with irradiated samples
→ compare scCVD diamond with Si detectors
→ expect better performance for scCVDs!

Cryogenic TSC set-up in preparation
→ resolve shallow traps
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BACKUP SLIDES
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Energy Loss in Diamond

http://www.nist.gov/pml/data/star/index.cfm

http://www.nist.gov/pml/data/star/index.cfm
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Pulse Shape for Constant Voltage

Pulse shape 
changes drastically 
with temperature!
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Two Contributions to Signal

     from Ramo-Theorem:
i t =inon−trapped t ireleasedt 

             =
e
d
∑i , not−trapped

v it−t i
start 

             
e
d
∑i , released

v it−t i
detrap

;

Qreleasedt =
Qtrapped 1−exp −t / detrap;

non-trappped

Qnot−trapped=Q−induced−Q trapped

released
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Detrapping vs. T
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Pulse shape at 67 K
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time

At full band 
width

At reduced 
band width

Reduced band width fakes 
shorter transient time

Band width
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