The Diamond Beam Monitor as part of ATLAS IBL upgrade

Christian Gallrapp

CERN

for the Diamond Pixel Collaboration

- ATLAS Upgrade
- The DBM Project
- Diamond Results
- Future Plans

First Part

ATLAS UPGRADE

Upgrade Phases

Phase O – IBL Upgrade

• Advanced IBL installation in 2013 instead of 2016

- New thinner beam pipe with a reduced outer radius
- Free space for additional pixel layer
 -> Insertable B-Layer
- New Front-End chip (FE-I4)
- Different sensor candidate technologies
 - Planar Silicon, 3D Silicon, Diamond Pixel

IBL specifications

- Insertable B-Layer (IBL)
 - 14 staves with 224 modules
 -> 6.02 x 10² pixel
 - Radius: 31.0mm to 40.0mm
- Design Requirements:
 - Fluence: 5 x 10^{15} n_{eq} cm⁻²
 - TID: 250 Mrad
- Modules
 - FE-I4 chip size: ~20x20 mm²
 with 336x80 pixel
 - Pixel size: 50 μ m x 250 μ m
 - Single or double FE-I4 modules

Application for FE-I4 diamond modules

- 20 FE-I4 diamond modules for sensor qualification
 - Operation threshold around 800 electrons
 - 4 FE-I4 diamond modules are already available for laboratory and test beam measurements
 - 10 sensors are ready for bump bonding and characterization

24 FE-I4 diamond modules for installation as Diamond Beam Monitor

Second Part

THE DBM PROJECT

DBM - Diamond Beam Monitor

- What is the DBM?
 - Eight 3-Modul Diamond Beam Telescopes in ATLAS
 - 24 FE-I4 diamond modules
- Purpose
 - Bunch by Bunch luminosity monitor
 - Finer segmentation and larger acceptance than BCM
 - No saturation
 - Bunch by Bunch beam spot monitor
 - Triple telescope for tracking
 - Distinguishes hits form beam halo tracks
- Design Considerations
 - Acceptance 3.2 < η < 3.5 (ATLAS Inner Detector acceptance: η < 2.5)
 - Use Phase O upgrade efforts to get access to the Pixel Detector

DBM – Layout I

Distance from the vertex: 90cm – 100cm

DBM – Layout II

DBM – Layout III

DBM specifications

Properties	Specifications
Sensor Size	21 mm x 18 mm (active area 20mm x 16 8mm)
Sensor Thickness	400-500 μm
Minimum charge collection distance	200 μm
Minimum average charge	7200 electrons
Minimum collection distance / charge after 2x10 ¹⁵ cm ⁻²	100 μm; 3600 electrons
Minimum signal/threshold after 2x10 ¹⁵ cm ⁻²	3
Maximum operation voltage	1000 V
Maximum total leakage current at 1000 V	100 nA

FE-I4 diamond modules

DBM operation

Two DAQ modes in parallel

- ATLAS trigger
 - DBM data for the ATLAS data stream
- Quasi-random trigger sampling all bunches
 - Bandwidth limit of the readout 160 MB/s
 - Assumed ~100bits/module, 1 link/module
 - 30% uptimes yields for 0.5 M events/s
 - Private stream for data-rich events

Performance estimate - Luminosity

- Efficiency
 - DBM has 5.4 higher acceptance than BCM
 - ~0.09 hits per telescope (plane) per p-p interaction
- Basic performance figures
 - Assumption
 - Hits in all modules in a telescope highly correlated
 - Hits in different telescopes uncorrelated
- Luminosity assessment
 - 0.7 hits in system at μ =1, polling at 0.5 M/s yields 350000 hits spread over 3564 BCID's
 - 100 hits/s per (full) BCID
 - 1 % precision in ~100 s, compatible with ATLAS LB
 - Operation at µ»1 indicates statistical precision on bunchby-bunch luminosity well below 1 % per lumi-block

Performance estimate – Beam Spot

- Resolution along beam axis at interaction point (z=0mm)
- Take 2 measurements 10 cm apart at z_{1.2} ~ 90 cm
 - $-\delta z_{1,2} \sim 500 \ \mu m/\sqrt{(12)} sensor thickness$
 - $-\delta r \sim 250 \ \mu m/\sqrt{(12)} \log pixel side$
- Track straight line in r-z projection, look for z of intercept with axis
- $\delta z \sim z_{1,2} \sqrt{(2)} \delta r/(r_1 r_2) \sim 13 \text{ mm}$
 - Looks adequate to locate interaction spot and eventual background sources
- Algorithms for beam spot localization in development by OSU and Bonn

DBM production

- Baseline: 24 modules to be installed
- Production model: aim for 30 good modules
- Loss of 25 % during module assembly
 - Need parts to assemble 40 modules
 - 40 sensors, FE-I4's, flip-chippings, flexes etc.
 - More than 20 sensors in hand for IBL qualification
- DBM adds of 24 IBL modules to the existing modules – Requires an additional ~5 % of most IBL components
- Major cost drivers
 - DBM specific parts
 - Sensors: ~20/45 already procured
 - Bump bonding: 40 % in qualification
 - IBL identical parts to be negotiated case by case
 - 5 % is in most cases much smaller than the spares level

Third Part

DIAMOND RESULTS

Threshold/Noise characterization

- DBM tuning is at the edge of Front-End capabilities
- Target Threshold: 800e
- Target Gain: 8ToT for 5000e

Threshold/Noise vs. Temperature

- Noise decreases with Temperature
- Front-End noise: ~80e

Mean Noise [e] 180 160 160 140

C. Gallrapp - The Diamond Beam Monitor as part of ATLAS IBL upgrade

Target Threshold [e]

Target Threshold [e]

Source analysis – Sr90

- Conditions:
 - Threshold: 1500e
 - Bias voltage: 300V
- Results:
 - Nice correlation
 - Clear beam spot

10

15

- Bias voltage is too low

QdistCS1

Entries

MP ToT

20

Mean ToT

Bias Voltage Thickness

Temperature

0L

문16000 도

414000 Sei12000

10000[,]

8000

6000

4000

2000

C. Gallrapp - The Diamond Beam Monitor as part of ATLAS IBL upgrade

Test Beam results

- 2011: several test beam periods at CERN SPS
- Data analysis not completed
- TB results confirm source measurements

Forth Part

FUTURE PLAN\$

Future Plans

- Plans for 2011
 - Additional lab measurements at higher bias voltages
 - Additional test beam measurements with second version of FE-I4 chip
 - Further development of DBM setup

Universität Bonn

- CERN Geneva
- Universität Göttingen
- Institut Jozef Stefan Ljubljana
- Ohio State University
- University of Toronto

Thanks for your attention