

E. Berdermann, M. Ciobanu, M. Fischer, J. Frühauf, S. Gsell, M. Kiš, W. Koenig, P. Moritz, MD. S. Rahman, M. Schreck, C. Stehl and M. Träger

CARAT RESULTS FROM DIAMOND-ON-IRIDIUM (DOI) SENSORS

- □ INTRODUCTION OBJECTIVES
- MATERIAL and SENSOR CHARACTERIZATION INTRINSIC Dia-On-Ir (DOI) SAMPLES: 2009, 2010, 2011
 - > DEFECTS, DARK CONDUCTIVITY, CHARGE COLLECTION
 - EFFICIENCY, ALPHA-TOF, BEAM-TESTS
- SUMMARY
- CONCLUSIONS and OUTLOOK

Engineering of CVD DOI plates for sensor applications
 Crystal growth and post processing; defect characterization

EOBJECT

- Electronic properties and DOI- Detector performance
 comparison of all three 'detector-grade' CVDD types
- ρ FEE developments
 - > Broadband amplifiers and discriminators single-channel and ASICs - in particular, for fast MIP timing

Target: Large-area, advanced-diamond strip sensors of low material budget for tracking and ToF of HI + MIP D DIAMOND-ON-IRIDIUM (

WAFER-SCALE SINGLE-CRYSTAL DIAMOND DETECTORS

BY HETEROEPITAXY

on large-area iridium substrates (CVD-DOI)

UA: S. Gsell et al.,
 Appl. Phys.Lett. 84 (2004)

FINAL SUBSTRATE STRUCTURE

CARAT results from diamond-on-iridium (DOI) sensors

3rd CARAT WS DEC 2011

UA: <u>C. Stehl, M. Schreck, M. Fischer</u>

NITROGEN and SILICON IMPURITIES

Photoluminescence of sample MFDIA886

two different positions on growth side

No SiV and NV peaks visible

3rd CARAT WS DEC 2011

BORON IMPURITIES

Cathodoluminescence of sample CSDIA018

HP2 CC, Frascati Dec 2011

CARAT - Advanced Diamond Detectors

SPECTRALLY RESOLVED PHOTOCURRENTS

2010

DETECTOR PROPERTIES

3rd CARAT WS DEC 2011

LOW I_{Dark}: COMPENSATION OF TRAPS GSI: M. Träger, S. Rahman

3rd CARAT WS DEC 2011

3rd CARAT WS DEC 2011

DOI STARTS TO BEHAVE

CCE : HSC - 2.5% $\delta E/E$: HSC + 3%

EGITONPROPERT

2010

IMPROVING ENERGY RESOLUTION

as HSC-CVDD

EGITONPROPERT

CCE + ENERGY RESOLUTION

 $CCE_{h-drift} \approx 93\%$ δE/E ≈ 1.5%

TOWARDS

DIAMOND

GRADE

3rd CARAT WS DEC 2011

Q-COLLECTION PROPERTIES

$\frac{CCE_{h-drift}}{CCE_{e-drift}} \approx 96$

3rd CARAT WS DEC 2011

Q-COLLECTION PROPERTIES

> COLLECTION EFFICIENCY \Rightarrow 2011 GSI: $CCE_{h-drift} \approx 93\%$ (pumped) $CCE_{e-drift} \approx 13\%$ (unpump.)

3rd CARAT WS DEC 2011

2nd DOI DELIVERY 2011

G TON PROP

CARAT results from diamond-on-iridium (DOI) sensors

3rd CARAT WS DEC 2011

2nd DOI DELIVERY 2011

RO

1

CARAT results from diamond-on-iridium (DOI) sensors

3rd CARAT WS DEC 2011

INTERNAL FIELD PROFILE - TCT

TRANSPORT PARAMETERS **P** 2010

GSI: M. Traeger, S. Rahman, EBe

TRAPPING and RELEASE?

trapping ≈ nanoseconds (BB-FEE); release and collection ≈ order of microseconds (shaping constant of shaping amplifier) TRANSPORT PARAMETERS

Michal Pomorski, PhD thesis, Univ. of Frankfurt (2008)

DEFECT-FREE HOMOEPITAXIAL SC-CVDD

1 Million

DD

 $v_{Drift} \ge 120 \ \mu m/ns$

 $v_{Drift} \ge 100 \ \mu m/ns$

3rd CARAT WS DEC 2011

ALEIE PR **N BUNK**

TRANSPORT PARAMETERS COMPARED

'EARLY' HOMOEPITAXIAL SC-CVDD

H. Pernegger, J. Appl. Phys. 97 073704 (2005)

TIME [ns]

8

DOI 2011

3rd CARAT WS DEC 2011

0

TIMING PROPERTIES - TCT

TRANSPORT PARAMETERS COMPARED

(HOLE DRIFT)

PRELIMINARY

DRIFT VELOCITY

DIAM -TYPE	E _D [V/μm]	v _{DRIFT} [cm/s]
CVD DOI	1.0	7.5 × 10 ⁶
,,	2.0	1.0 × 10 ⁷
HSC CVDD	2.0	1.6 × 10 ⁷

 $v_{DRIFT} = d_D/t_{Tr}$

3rd CARAT WS DEC 2011

TRANSPORT PARAMETERS COMPARED

Michal Pomorski PhD thesis (2008)

3rd CARAT WS DEC 2011

INTERNAL FIELD PROFILE -TCT

TRANSPORT PARAMETERS COMPARED

ALL THREE DETECTOR-GRADE CVDD TYPES

3rd CARAT WS DEC 2011

INTERNAL FIELD PROFI

2nd DOI DELIVERY 2011

3rd CARAT WS DEC 2011

INTERNAL FIELD PROFI

2nd DOI DELIVERY 2011

3rd CARAT WS DEC 2011

INTERNAL FIELD PROFILE - TCI

2nd DOI DELIVERY 2011

VERY RECENT DATA

P better substrate side

BB ELECTRONICS

GSI: P. Moritz, M. Ciobanu, W. Koenig M. Träger, S. Rahman, C. Stehl, EBe

3rd CARAT WS DEC 2011

- *CCE*: 90%-96%
 δE/E(α's): 1.5%
- TIME RESOLUTION CONFIRMED
 - ≻ 20-25 ps
- ρ FEE (BB) BETTER UNDERSTOOD
 - Iow-noise, low-capacitance setups

- □ NOT YET TESTED (ALTHOUGH POSSIBLE)
 - Larger area samples
 - Micro-strip sensors with PADI

♦ DOI is ALREADY a (DEFECTIVE) SINGLE CRYSTAL DIAMOND MATER.

- > BUT ONLY REGARDING THE HOLES
- > ELECTRON BEHAVIOR: NOT UNDERSTOOD

♦ NEXT STEPS TO DO

- >TO UNDERSTAND BETTER THE OBTAINED RESULTS
- > TO MINIMIZE THE DISLOCATION DENSITY
- > TO ENLARGE THE TEST SAMPLE AREA
- >TO USE PULSED UV-LASER FOR THE CHARACTERIZATION

Replacement of established neutron monochromator materials by diamond:

Established materials:

Graphite (HOPG), plastically deformed Ge, Cu, Si

New material:

DOI mosaic crystals with well defined mosaic spread of 0.2° to 0.5°

DOI sample to replace standard HOPG element $(1.5 \times 1.5 \times 0.15 \text{ cm}^3, 6 \text{ ct})$

3rd CARAT WS DEC 2011

UA: M. Schreck, M. Fischer

The HOPG-monochromator of PANDA with 121 individual ajustable elements (2 x 2 x 0.2 cm³) (priv. comm. G. Borchert, FRM II) CARAT results from diamond-on-iridium (DOI) sensors

UNEXPECTED RAPID PROGRESS OF SAMPLE QUALITY

DOT DIAMOND TOWARDS LARGE-AREA 'SPECTROSCOPIC-GRADE' CVD DOT!