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nanoTUM

• Nano-related research at the Technische Universtität München:
more than 50 research groups from 
several faculties and central institutes are 

working on nanoscience and nanotechnology

• Broad range of research topics (theoretical work, fundamental research, applied 
science, technology)

• Many topics/research fields are interdisciplinary

2004:  start of nanoTUM – TUM Institute for Nanoscience and 
Nanotechnology

• Coordination of all activities in the field of nanoscience/nanotechnology in one 
virtual institute

• Cross-links to other nano clusters/networks in and around Munich by concomitant 
members in Clusters of Excellence etc.

• Intensive collaboration with partner universities DTU and TU/e
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Chemical vapour deposition (CVD) 
of diamond

• Gas mixture of carbon containing gas and hydrogen 
e.g. 1-5% CH4 in H2

• Formation of radicals and atomic hydrogen by plasma or hot filament

• High enough substrate temperature: diamond deposition

• Role of atomic hydrogen: 
stabilisation of sp3 carbon phase 
etching of sp2 carbon phase

• Deposition on non-diamond substrates: 
pretreatment required to enhance nucleation density

• Morphology: from monocrystalline to (ultra)nanocrystalline
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Monocrystalline CVD diamond films

• Homoepitaxy: diamond substrates
limited by size of substrates

• Heteroepitaxy:  bias enhanced nucleation
Ir/SrTiO3/Si(001) (Schreck et al. 2004)
Ir/YSZ/Si(001), Ir/YSZ/Si(111) (Schreck et al. 2004, 2008)
up to 4 inch.

Gsell, Schreck et al. 2004 Fischer, Schreck et al. 2008

Diamond on Ir/YSZ/Si(001) Diamond on Ir/YSZ/Si(111)
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Polycrystalline CVD diamond films

• Substrates: Si, SiC, glass, metals (e.g. Ti, Mo, WC) etc
• Columnar growth
• Roughness increases with film thickness

2 μm

Si substrate5 μm

Sternschulte et al. Diamond 2006
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Polycrystalline diamond (PCD) films: 
Van der Drift growth model

• Van der Drift growth model: overgrowth of crystallites

⇒ Development of surface texture depending on fastest growth direction
⇒ Fastest growth direction influenced by growth parameters        

e.g. by CH4 concentration, substrate temperature

2 μm

Si substrate

Sternschulte et al. Diamond 2006

Smereka et al. Acta Materialica 2005
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PCD with short deposition times: 
“pseudo” nanocrystalline diamond films

Very high diamond nucleation density on substrate and short deposition times:
⇒ thin fully closed films with small diamond crystallites

grain size (lateral) up to 100nm
But: Anisotropic properties

Butler et al. CVD 2008

Kulisch et al. phys. stat. sol. (a) 203 (2006) 203
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(Ultra) Nanocrystalline CVD diamond films

• Fine grained material with structureless cross section 
• “Homogeneous” material compared to PCD

• Roughness ≈ 10-15nm 
independent from film thickness up to several µm

• Different growth mode

1 μm Si substrate500 nm

Sternschulte et al. Diamond 2006
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Growth of ultra nano crystalline 
diamond (UNCD) films

• CVD with oversaturated carbon precursor concentration 
e.g. by replacement of hydrogen gas by Ar or N2
or drastically increased carbon concentration in H2 gas mixture

• Other possibility: applied bias voltage during growth process

⇒ Generation of high concentrations of defects at the surface

• Defect sites cause formation of twins, nucleation of new crystallites

⇒ Extremely high secondary nucleation rate during diamond deposition

⇒ small diamond grains

• Ultrananocrystalline diamond (UNCD): diamond grains ≤10nm
Nanocrystalline diamond (NCD): diamond grains ≈10-100nm
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Structural properties of UNCD films

• Small crystalline diamond grains embedded in amorphous sp2/sp3 C:H 
matrix 

• No preferred orientation: powder like

⇒ Model system for amorphous materials

TEM: R. Brescia
(Uni Augsburg)
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Morphology of UNCD on Si: 
low nucleation density with 108/cm2

Sternschulte et al., Diamond 2007

• Rough surface with circular shaped diamond islands

• Each sphere consists of nanocrystalline diamond

2µm5µm
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Growth mechanism

• Diamond island size distribution  independent from deposition time

⇒ no diffusion controlled growth

1µm

SEM: UNCD with tdep=40min
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Growth mechanism

• Growth mechanism: 
growth perpendicular to surface 
(Huygens principle)

⇒ Smoothening via growth and   
coalescence of diamond islands

• From PSD analysis of surface
roughness: 
Indication for smoothening effect
by surface diffusion
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Properties of UNCD and NCD: how large 
is the influence of the grain boundaries?

• UNCD/NCD consists of diamond nano particles embedded in a matrix

⇒ High fraction of atoms located at grain boundaries:
cubic diamond grain with a = 3.6nm:  38% C at surface

a = 36nm:   3.8 % C at surface

⇒ Small volume fraction of diamond:
grain boundary width 4nm and ∅dia = 10nm: 36% of volume is diamond

∅dia = 20nm: 58%
∅dia = 5nm: 17%

• “Number“ of grain boundaries:

UNCD: grain boundaries in 3D:    10nm grain size ⇒ 1018/cm3

100nm grain size ⇒ 1015/cm3

“pseudo“ NCD with perfect columns: grain boundaries only lateral (2D) 
10nm diameter ⇒ 1012/cm3

Kulisch et al. (2006) 
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Properties of UNCD films: sp2 carbon

Gruen Annu. Rev. Mater. Sci 1999

• NEXAFS to determine fraction of 
sp2 carbon:
C1s absorption with clearly 
separated signal of sp2 and sp3 C

• In this example: less than 5% sp2

bonded carbon

• Most probably at the grain 
boundaries/boundary between 
grains and matrix

⇒ Influence of grain size on sp2

concentration
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Determination of sp2 carbon: EELS

• Another possibility:
Energy electron loss spectroscopy
(EELS) 

• XPS or TEM

• Advantage of TEM: mapping

Liu et al. Diamond Relat. Mater. 2007
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EELS at TEM: 
sp2 carbon at grain boundaries

Okada et al. 
J. Appl. Phys. 2003
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H concentration: IR absorption

• IR absorption shows clear signal of C-H modes
• Measurement of bulk material
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H concentration in NCD films

• H concentration scales with grain size
⇒ H is incorporated in the grain boundaries
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H incorporation in UNCD films

• High resolution electron loss 
spectroscopy (HREELS): 
inelastic scattering of 
electrons near the surface

⇒ Excitation of C-C and C-H 
vibration modes

⇒ Identification of H bonding:
H-sp2 C and H-sp3 C

• H concentration calibrated 
with SIMS

Williams et al. Diamond Relat. Mater. 2008
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Optical properties: Raman

• With decreasing grain size:
diamond Raman line at 1333cm-1

weaker and broadened

• Strong signal of D and G band
i.e. sp2 C

• Diamond peak more pronounced 
with UV excitation

• New lines at 1140cm-1 and 
1480cm-1:
trans-polyacetylene at grain 
boundaries

Zhou et al. J. Appl. Phys. 1998
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Raman: influence of growth parameters

• Signal of trans-polyacetylene influenced by growth conditions

• Annealing at 1200oC: trans-polyacetylene lines vanish
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Optical absorption UV-VIS

• UNCD/NCD: strong absorption in the visible spectral range

Sternschulte et al. Diamond 2007

Decreasing grain size
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UNCD: Optical absorption by matrix

• Absorption depends strongly from grain size

⇒ Absorption caused by grain boundary material

Sternschulte et al. Diamond 2007
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Optical properties of UNCD/NCD and 
“pseudo“ NCD

• “Pseudo” NCD: order of magnitudes lower number of grain boundaries
⇒ Weaker absorption signal

Williams et al. phys. stat. sol. (a) 2006
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Electronic properties: 
doping of UNCD/NCD

• Undoped UNCD/NCD: high electrical resistivity

⇒ Doping required to enhance electrical conductivity

• Doping of diamond

p-type doping: Boron EAB =  370meV

n-type doping: Phosphorus EDP =  600meV

Nitrogen EDN = 1700meV

⇒ Doping of UNCD/NCD with similar approach
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UNCD/NCD: p-type doping with boron

• Most literature about boron-doped NCD: 
“pseudo” NCD i.e. growth parameters as PCD

• Influence of boron addition during CVD deposition of UCND?
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UNCD deposition without boron addition

• Deposition of UNCD with hot filament reactor and
CH4/H2/Ar gas mixture with 0.5sccm CH4/50sccm H2/200sccm Ar

P. May et al. MRS Proc. 956 (2006)
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UNCD deposition with boron addition

• Addition of B2H6 (300ppm with respect to CH4)
⇒ Change of morphology and growth mode!

P. May et al. MRS Proc. 956 (2006)
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Influence of boron addition on 
UNCD growth

• Reduced secondary nucleation rate
⇒ Change to columnar growth behaviour

M. Dipalo, Dissertation Uni Ulm 2008

Boron doped layer

Undoped UNCD
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Boron doped ”pseudo“ NCD

• Doping behaviour comparable to polycrystalline diamond
• Metallic doped “pseudo” NCD: 

superconductive behaviour observable with TC = 1.7K 

Gajewksi et al. Phys Rev B 2009
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Electrical properties of boron doped NCD: 
influence of grain size

• Conductivity is strongly dependent from grain size

M. Dipalo, PhD thesis, Universität Ulm 2008
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Influence of grain size on mobility

• Hole mobility drops down with decreasing grain size

M. Dipalo, PhD thesis, Universität Ulm 2008
Barjon et al. phys. stat. sol. RRL2009

Mobility of B-doped monocrystalline diamond
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n-type doping of UNCD with Nitrogen

• n-type conductivity is observable
• Low activation energies of 10meV

Williams et al. 
Diamond Relat. Mater. 2008

Williams et al. 
Appl. Phys. Lett. 2004
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Nitrogen doped UNCD

• By Nitrogen addition: larger diamond grains 
increased grain boundary width
slightly increased sp2 C concentration

• “Grain boundary” doping: modification of the matrix by nitrogen 
similar to DLC but with much higher mobility

Birrell et al. J. Applied Phys. 2003

Bhattacharyya et al. Appl Phys. Lett. 2001
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Thermal properties

• Thermal conductivity decreases 
with smaller grain size

⇒ Thermal properties of UNCD 
rather poor

But: very smooth surface can be     
advantageous

⇒ Thermal transport of  “pseudo”
NCD much better

Angadi et al. J. Appl. Phys. 2006

NCD

UNCD
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Mechanical properties

• Young modulus depends on grain 
size

• UNCD with 10nm grains: 
reduction of Young modulus by 30%

• For comparison:
Si:   130GPa 
SiC: 450GPa

⇒ UNCD ideal for MEMS

Wiora et al. Diamond Relat. Mater. 2009
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Summary

• Ultra nanocrystalline diamond films: 
very smooth diamond films
“homogeneous“ isotropic material

• Optical properties dominated by matrix:
strong absorption in the visible spectral range

• Electronic properties: 
n-type doping of UNCD by modification of matrix ⇒ n-type possible!
p-type doping of NCD: comparable to diamond but low mobility

• Mechanical properties: 
influence of grain size on Young modulus
but much higher Young modulus compared to other material

⇒ It depends on the application if UNCD is the material of choice!


