Conductivity Study of CVD-diamond detectors

Shahinur Rahman
Contributing...

♣ E. Berdermann
♣ M. Ciobanu
♣ M. Traeger
♣ M. Schreck
♣ C. Stehl,
♣ S. Dunst
♣ M. Pomorski
♣ Detector Laboratory, GSI
♣ Target Laboratory, GSI
Outlines

- Introduction
- $I-V$ characteristics of CVD Diamond Detectors
- Dark conductivity study of CVD Diamond materials
 1. Homoepitaxial CVD Diamonds, both sc and sc coating with DLC
 2. Heteroepitaxial quasi sc CVD Diamond on Ir (DoI)
- Summary
Introduction

Electrical Conductivity

Electrode-Limited conduction

1. Schottky (Thermionic) emission
 (i) Direct Tunneling (DT)
 (ii) Fowler Nordheim (FN)

2. Tunneling

Bulk-Limited conduction

1. Space-charge limited conduction (SCLC)
2. Poole-Frenkel (P-F) conduction
3. Trap Assisted Tunneling (TAT)
Diamond Detectors

Diamond

Diamond Detectors
Measurement setups

- Diamond Detectors
- Diamond Detector Electrodes
- Ceramic
- Temperature Sensors
- Electrodes
I-E characteristics CVDD Detectors

![Graph showing I-V characteristics](image-url)

- **DARK CURRENT [A]**
 - -8×10^{-13}
 - -4×10^{-13}
 - 0
 - 4×10^{-13}
 - 8×10^{-13}

- **E_D [V/µm]**
 - -6
 - -5
 - -4
 - -3
 - -2
 - -1
 - 0
 - 1
 - 2
 - 3
 - 4
 - 5
 - 6
 - 7

- **Lines and markers**
 - sc-CVDD_45 Ph-II (100µm)
 - Dol 549a (230µm)
 - 724b (12µm)
 - 886-1 (290µm)
 - 886-2 (320µm)
Electrical conduction of scCVDD

\[\text{scCVDD 10B50 (50\,\mu m)} \]
\((\text{Al-Dia-Al}) \)

\[I^{-}V \text{ characteristics at higher temp} \]

\[I^{-}E \text{ characteristics, SCLC} \]
Space Charge Limited Conduction (SCLC)

$\text{sc37}_113\mu m (\text{Al/DLC-Dia-DLC/AL})$

Theory of SCLC

$$I_{\text{Child}} = \frac{9}{8} \mu \varepsilon \frac{V^2}{d^3}$$

$$I_{\text{TFI}} = \frac{9}{8} \mu \varepsilon \theta \frac{V^2}{d^3}$$

Here,

- μ electronic mobility
- V applied bias
- d thickness
- ε dielectric constant
- $\theta = \frac{\text{_free Carrier Density}}{\text{Total Carrier Density}}$

Diagram Details

- **Region I & III**: Child's law
- **Region II**: Trap-filled limited
- $n \approx 2.9$
- $n \approx 5.9$
- $100^\circ C$
- Positive bias
- **Positive Bias**
- **sc-CVDD sc37_113um**
Electrical conduction of scCVDD

scCVDD 10B50 (50µm) (Al-Dia-Al)

scCVDD s256-02-06

I-E characteristics, SCLC

Michal Pomorski
PhD thesis 2008
I-V characteristics of scCVDD with DLC coating

sc37_113µm
(AI/DLC-Dia-DLC/AL)

I-V characteristics at higher temp.
Electrical conduction of scCVDD with DLC coating

\[J = A^* T^2 \exp \left[-\frac{q(\phi_b - \sqrt{qE_D}/4\pi\kappa_d\varepsilon_o)}{k_bT} \right] \]

\[\ln(J/T^2) \propto E_D^{1/2} \]

\[\eta^2 = K_d \]

Schottky emission (S-E) conduction? NO
Electrical conduction of scCVDD with DLC coating

\[J = C_i E_D \exp \left[-\frac{q(\phi_i - \sqrt{qE/\pi\kappa_d\varepsilon_o})}{k_B T} \right] \]

\[\ln(J / E_D) \propto E_D^{1/2} \quad \eta^2 = \kappa_d \]

Poole-Frenkel (P-F) conduction? NO
Electrical conduction of scCVDD with DLC coating

scCVDD sc37 (113µm)
(AL/DLC-Dia-DLC/AL)

I-E characteristics, SCLC
E^{ac} of scCVDD with DLC coating

\[
\ln(I) = A + \frac{E^{ac}}{k_B T} \frac{1}{T}
\]

E^{ac}, activation energy

k_B, boltzmann constant

T, absolute temp.

\[E^{ac} \approx 0.381 \pm 0.017 \text{ eV}\]

\[E^{ac} = 0.441 \sim 0.534 \text{ eV}\]

scCVDD sc37 _ 113mm (Al/DLC-Dia-DLC/Al)

Activation Energy of the trap

13-15 December

1000/T [K⁻¹] 2nd CARAT Workshop, GSI

Shahinur Rahman

15
I-V characteristics of Early DoI

DoI 549a 230µm

<table>
<thead>
<tr>
<th>Voltage [V]</th>
<th>10^{-16}</th>
<th>10^{-14}</th>
<th>10^{-12}</th>
<th>10^{-10}</th>
<th>10^{-8}</th>
<th>10^{-6}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Early Results

I-V characteristics at higher temp.
Activation energy of Early DoI

Activation Energy of traps $E_{ac} = 1.53 \pm 0.01$ eV

Ref. $E_{ac} = 1.4$ eV; A. Stolz, et al., DRM 2006
Electrical conduction of early DoI

DoI 549a 230\(\mu m\)

\[I \propto E^\alpha \]

\(I \), Current [A]
\(E \), Field [V/\(\mu m\)]

\(\alpha = 1.77 \)
\(\alpha = 1.39 \)
\(\alpha = 1.58 \)
\(\alpha = 1.22 \)
\(\alpha = 1.55 \)
\(\alpha = 1.70 \)
\(\alpha = 1.02 \)
\(\alpha = 1.24 \)
\(\alpha = 0.9 \)
\(\alpha = 0.66 \)
\(\alpha = 0.3 \)
\(\alpha = 0.28 \)
\(\alpha = 0.66 \)

I-E characteristics Dark conductivity ??
Electrical \((I-E)\) Characteristics of DoI

Dol 886-1 290\(\mu\)m

I-V characteristics at higher temp.
Electrical conduction of DoI

\[J = A^* T^2 \exp \left[-\frac{q (\phi_b - \sqrt{qE_D/4\pi\kappa_d\varepsilon_o}}{k_b T} \right] \]

\[\ln(J/T^2) \propto E_D^{1/2} \quad \eta^2 = \kappa_d \]

Schottky emission (S-E) conduction? NO
Electrical conduction of DoI

\[J = C_i E_D \exp \left[-q(\phi_i - \sqrt{qE/\pi\kappa_d\varepsilon_o}) \frac{k_b T}{k_b T} \right] \]

\[\ln(J / E_D) \propto E_D^{1/2} \quad \eta^2 = \kappa_d \]

\[n = 0.3053 - 0.3421 \]

Poole-Frenkel (P-F) conduction?

\[n = 0.4849 - 0.621 \]

NO
Electrical conduction of DoI

DoI 886-1 290µm

I-E characteristics, SCLC
Electrical conduction of DoI

\[\ln(I) = A + \frac{-E^{ac}}{k_b} \cdot \frac{1}{T} \]

- \(E^{ac} \), activation energy
- \(k_b \), Boltzmann constant
- \(T \), absolute temperature

Activation Energy of the trap level

\(E^{ac} = 1.318 \text{eV} \)
Summary

- Electrical (I-V) characteristics of scCVDD detector are analyzed
- The dominant dark current conductivity of scCVDD detector is SCLC
- The activation energy level of the trap is 0.37~0.39eV
- After coating scCVDD with DLC the conductivity remains the same, i.e, SCLC and the activation energy is (0.38 ± 0.017)eV at negative bias while at positive bias $E^{ac}=0.44$~0.54eV
- The DoI show SCLC mechanism with an activation energy of $E^{ac}=1.32$~1.026eV
Thank you for your attention