

Conductivity Study of CVD-diamond detectors

Contributing...

- **& E. Berdermann**
- M. Ciobanu
- ★ M. Traeger
- M. Schreck
- ♣ C. Stehl,
- ♣ S. Dunst
- M. Pomorski
- Detector Laboratory, GSI
- ★ Target Laboratory, GSI

Outlines

Introduction

- I-V characteristics of CVD Diamond Detectors
- Dark conductivity study of CVD Diamond materials
 - 1. Homoepitaxial CVD Diamonds, both sc and sc coating with DLC
 - 2. Heteroepitaxial quasi sc CVD Diamond on Ir (Dol)

Summary

(ii) Fowler Nordheim (FN)

3. Trap Assisted Tunneling (TAT)

Diamond Detectors

Diamond

Diamond Detectors

13-15 December

2nd CARAT Workshop, GSI

Measurement setups

I-E characteristics CVDD Detectors

Electrical conduction of scCVDD

scCVDD 10B50 (50µm) (AI-Dia-AI)

I-V characteristics at higher temp I-E characteristics, SCLC

Space Charge Limited Conduction (SCLC)

sc37_113µm (Al/DLC-Dia-DLC/AL)

theory of SCLC

Here, μ electronic mobility V applied bias d thickness ε dielectric constant $\theta = \frac{free _ Carrier _ Density}{Total _ Carrier _ Density}$

Electrical conduction of scCVDD

scCVDD 10B50 (50µm) (AI-Dia-AI)

scCVDD s256-02-06

VOLTAGE [V]

I-E characteristics, SCLC

Michal Pomorski PhD thesis 2008

I-V characteristics of scCVDD with DLC coating

sc37_113μm (Al/DLC-Dia-DLC/AL)

2nd CARAT Workshop, GSI

Electrical conduction of scCVDD with DLC coating

Schottky emission (S-E) conduction ? NO

Electrical conduction of scCVDD with DLC coating

scCVDD sc37 (113μm) (AI/DLC-Dia-DLC/AL)

Poole-Frenkel (P-F) conduction ? NO

Electrical conduction of scCVDD with DLC coating

scCVDD sc37 (113μm) (AI/DLC-Dia-DLC/AL)

I-E characteristics, SCLC

2nd CARAT Workshop, GSI

Eac of scCVDD with DLC coating

I-V characteristics of Early DoI

2nd CARAT Workshop, GSI

Activation energy of Early DoI

Dol 549a 230µm

2nd CARAT Workshop, GSI

Electrical (I-E) Characteristics of DoI

Dol 886-1 290µm

2nd CARAT Workshop, GSI

Schottky emission (S-E) conduction ? NO

2nd CARAT Workshop, GSI

Poole-Frenkel (P-F) conduction ?

NO

2nd CARAT Workshop, GSI

Activation Energy of the trap level

2nd CARAT Workshop, GSI

Summary

- Electrical (I-V) characteristics of scCVDD detector are analyzed
- The dominant dark current conductivity of scCVDD detector is SCLC
- The activation energy level of the trap is 0.37~0.39eV
- After coating scCVDD with DLC the conductivity remains the same , *i.e*, SCLC and the activation energy is $(0.38 \pm 0.017)eV$ at negative bias while at positive bias $E^{ac}=0.44\sim0.54eV$
- The Dol show SCLC mechanism with an activation energy of *E^{ac}*=1.32~1.026eV

Thank you for your attention