œ

Large area position-sensitive CVD diamond detectors for X-ray beam monitoring with extreme position resolution

<u>M. Pomorski</u>, P. Bergonzo, Ch. Mer, M. Rebisz-Pomorska D. Tromson, N. Tranchant Diamond Sensors Laboratory, CEA LIST, France

S.Hustache, K. Desjardins Synchrotron Soleil, France

J. Morse ESRF, France

J. Gruenert, Ch.Bressler, W. Gawelda European XFEL, Germany

- Motivation/Goal
- □ Why Diamond?
- Detector Fabrication and Read-out
- Measurements and Results
 - in-beam duo-lateral scCVD-PSD
 pulse-mode XBPM @ MHz regime
 four-corner PSD lab tests
- Summary and Outlook

beam tracking within ~700m (pulse-mode, $4mm^2$, $\sigma \le 7\mu m$)

EU XFEL (Jan Gruenert talk 1st CARAT workshop)

Why Diamond ? Physical Properties

40 μ m Diam ~ 5 μ m Si

heat conductivity, radiation hardness, solar-blind, no dark-current, compact device

CVD Diamond Radiation (Particles) Detectors Basics

diamond position sensitive detectors for X-ray beam monitoring

pixel, strip

© large sensitive area © beam position and profile

⊗ sophisticated electronic
 ⊗ pixel size limits position resolution

quadrant

© fast © only 4 channels

⊗ small 'active' area
 ⊗ beam size dependence

resistive electrode

© large sensitive area © only 4 channels

 $\ensuremath{\textcircled{\sc speed}}$ speed limited by RC

Detector Fabrication

diamond material: electronic grade scCVD

DLC resistive layer: PVD, R from 1kOhm to few MOHms

metal collecting electrodes: PVD, Al or CrAu, photolithogr.

Duo-lateral PSD: Read-out Electronics

DC mode (10Hz) - Keithley electrometers ; pulse mode - FEMTO ampl. (200MHz)

Duo-lateral PSD: Experimental Environment

masurement setup @ ID06 ESRF

measurement setup@µXAS SLS

ESRF, Grenoble FR, ID06

Beam energy: 10.5 keV Beam size: 100 x 100 μ m (slits limited) Beam flux: 1.6 x 10¹¹ ph/sec Flux absorbed = 1.56 x 10⁸ ph/sec/ μ m scCVD XBIC ~ 0.5 μ A DC

DC

Soleil, Gif-sur-Yvette FR, Proximal & SIXS

Beam energy: 12.6 keV & 5.6 keV Beam size: $300 \times 300 \ \mu m$ (slits limited) Beam flux: $2.3 \times 10^{12} \text{ ph/sec}$ Flux absorbed = $4.6 \times 10^8 \text{ ph/sec/}\mu m$ scCVD XBIC ~ $10 \ \mu A \ DC$ Swiss Light Source, Villigen CH, μXAS Beam energy: 7.05 keV Beam size: 50 μm FWHM

Beam flux: 4.8×10^{12} ph/sec Flux absorbed = 10^3 ph/pulse scCVD XBIC ~ $19 \mu A DC$

pulse

In-beam Performance: Beam Intensity Monitoring (DC mode)

Beam intensity monitoring @ ID06 ESRF (X1+X2 and Y1+Y2) scCVD-PSD 40 μ m

Beam intensity monitoring @ Proxima 1 Soleil (X1+X2) scCVD-PSD 300 um

li*s*t

In-beam Performance: Reconstructed Position Pattern and Linearity

In-beam Performance: Position resolution (DC mode)

CEC Diamond Position Sensitive Detectors In-beam Performance: Long Term Stability @ ESRF ID06

li/t

40 μ m scCVD-PSD permanently mounted at the ID06, vacuum 10⁻⁷ mbar

beam drift measurement with scCVD-PSD and IC-PSD after few months in the X-ray beam

CECI Diamond Position Sensitive Detectors In-beam Performance: Pulse-mode XBPM @ MHz Regime PRELIMINARY

1 k Ω sq. lateral 1D scCVD-PSD 400 μ m, active area 1.4 x 2 mm² beam time structure with scCVD-PSD

Four-corner PSD: preliminary lab tests

irradiation throught a metal mesh

 241 Am a-particles injection ~ 4MeV (50 fC) (measurement in air)

Pulse mode with, fast CSA (Mircea Ciobanu), 200ns integration time

li/t

A novel type of PSD based on scCVD diamond and DLC resistive electrodes has been built and tested for XBPM at synchrotrons:

Summary

- semitransparent in-beam detector, stable and reliable operation
 - absolute beam intensity monitoring with a precision of ~0.1%
 - sub-micron position resolution (reaching 27 nm σ)
 - very good (<<1%) linearity up to 4x4 mm² active area
- pulse-mode operation within 20ns integration time demonstrated (can be used also as a single particle PSD)

- to build and test more prototypes
 - Iong term stability tests
 - detector performance evaluation in function of the bandwidth
 - tests in extreme conditions: white beams, XFEL
- ultra-thin scCVD-PSD for low energy (<3keV) lines</p>
- tetra-lateral approach
 + resistive lateral lines
 boron doped CVD diamond layer (PIM structure)
- dedicated electronics missing

Thank you for your attention !