Characterization of Conductivity: Basic Properties and Challenges

Christoph E. Nebel

Fraunhofer Institute for Applied Solid State Physics

79108 Freiburg, Germany

© Fraunhofer IAF

Conductivity

$$\sigma = en\mu_n + ep\mu_p$$

- e: elementary charge
- n: electron density
- p: hole density
- μ_n : electron mobility
- μ_p : hole mobility

Outline

- 1) Introduction
- 2) Defects in Diamond
- 3) Deep Trapping Lifetime, Schubweg and Mobility
- 4) $\mu\tau$ -Products as a Function of Nitrogen Content
- 5) Properties of Poly-Crystalline CVD Diamond
- 6) Spectrally Resolved Photoconductivity
- 7) Contact Properties
- 8) Summary

1. Introduction: Comparison Sheet

Physical characteristics of Si and major WBG semiconductors

Property	Si	GaAs	6H-SiC	4H-SiC	GaN	Diamond
Bandgap, E _g (eV)	1.12	1.43	3.03	3.26	3.45	5.45
Dielectric Constant, ϵ_r	11.9	13.1	9.66	10.1	9	5.5
Electric breakdown field , E _C (MV/cm)	0.3	0.4	2.4	2	0.2	5.6
Electron mobility, μ_n (cm ² /Vs)	1,500	8,500	370	720	1,250	4,500
Hole mobility, μ_p (cm ² /Vs)	600	400	101	115	850	3,800
Thermal conductivity, λ (W/cmK)	1.5	0.46	4.9	4.9	1.3	22
Saturation electron drift velocity, v _{sat} (x10 ⁷ cm/s)	1	2	2	2	2.2	2.7

Diamond

Available:

- natural
- High pressure high temperature (HTHP)
- CVD diamond

Morphology:

- □ single-crystalline
- □ poly-crystalline
- □ nano-crystalline
- □ ultra-nano-crystalline

Single Crystalline Diamond 4 mm x 4 mm

Poly-Crystalline CVD Diamond

Electron Mobilities

T^{-3/2}: acoustic phonon scattering

Isberg et al.,: Time-of-flight in undoped CVD diamond (Science 297, p. 1670 (2002): **4500** cm²/Vs)

Nava: Time-of-flight on natural undoped diamond Konorova: Hall effect Redfield: Hall effect

Koizumi et al.: Hall effect on Phosphorus doped diamond

RT-mobility: 725 to 4500 cm²/Vs

Hole Mobilities

Doping of Diamond for Electronic Applications

Thermal Activated Resistivity of Undoped Diamond

Thermal Activated Resistivity of Undoped Diamond

Thermal Activated Resistivity of Undoped Diamond

$$\sigma = e \ \mu(T) n_o e^{-E_{act}/kT}$$

Polycrystalline CVD Diamond

P1 Center (N-Dopant, g = 2.0024)

EPR of substitutional nitrogen (g=2.0024). Satellite positiondepends on magnetic field with respect to (111)-orientation

Color Centers in Diamond

Optical Excitation and Emission of NV and NiN_x

The <u>NV centers</u> show two broad emission bands excited by 514.5 nm:

ZPL(1): 579 (neutral NV) ZPL(2): 637.2 nm (neg. charged NV⁻)

The <u>NiN_x centers</u> show three very narrow (FWHM of 1.7 nm) emission lines excited by 687 nm and 745 nm:

782.5nm 797.6 nm 802.0 nm

This shift is caused by slightly different arrangements of this Center (need to be characterized).

Dislocations

Lattice distortion

- Grow from substrate into epi-layer
- Killer of high voltage devices

Minimization:

soft etching of substrate befor growth , to remove distortions

3. Deep Trapping Lifetime, Schubweg and Mobility

$$\tau = \frac{1}{N_D \nu_{th} \sigma_{cross}}$$

 $v_{th} = 10^7 \text{ cm/s}$ $\sigma_{cross} = 10^{-14} \text{ cm}^2$ $N_D = 10^{18} \text{ cm}^{-3}, 10^{17} \text{ cm}^{-3}, 10^{16} \text{ cm}^{-3}$

Time of flight set-up for α -particle detection

Source for α -particle ⁹⁰Sr or ²⁴¹ Am

M. Pomorski et al., phys. stat. sol.(a) 202, 2199-2205 (2005)

300 μ m SC Diamond (e6)

Collection efficiency of holes better than of electrons: but good!

Time of Flight Signals

Fig. 7 Electron-drift signals at different electric fields: 0.24, -0.27, -0.34, -0.44, -0.51, -0.58, 0.68, $-0.83 \text{ V/}\mu\text{m}$.

Fig. 8 Hole-drift signals at different electric fields: $E = 0.18, 0.24, 0.34, 0.51, 0.68, 1 \text{ V/}\mu\text{m}.$

M. Pomorski et al., phys. stat. sol.(a) 202, 2199-2205 (2005)

TOF by Pernegger et al.

H. Pernegger, CERN, RD42 coll. Meeting May 2004

Fraunhofer

Result Summary

M. Pomorski et al., phys. stat. sol.(a) 202, 2199-2205 (2005)

	$\mu_0 - low$ field mobility [cm ² /Vs]	v_s – saturation velocity [cm/s]	τ – life time [<i>ns</i>]
electrons holes	2071 ± 212 2630 ± 123	$\begin{array}{c} 0.85 \pm 0.08 \times 10^7 \\ 1.34 \pm 0.05 \times 10^7 \end{array}$	$\begin{array}{rrr} 174\pm & 15\\ 968\pm 230 \end{array}$

Excellent Properties, but not 4500 and 3800 cm²/Vs Saturation velocity of electrons < 1.5x10⁷ cm/s Electon properties are not as good as holes!

© Fraunhofer IAF

4. $\mu\tau$ –Product as Function of Morphology and Nitrogen

 $\mu\tau = 10^{-5} \text{ cm}^2/\text{V} \rightarrow 10^{15} \text{ cm}^{-3} \text{ Nitrogen}$ $\mu\tau = 10^{-4} \text{ cm}^2/\text{V} \rightarrow 10^{14} \text{ cm}^{-3} \text{ Nitrogen}$ $\mu\tau = 10^{-3} \text{ cm}^2/\text{V} \rightarrow 10^{13} \text{ cm}^{-3} \text{ Nitrogen}$

J. Isberg et al., Diam. Rel. Mat. 13 (2004) 872.

$\mu\tau$ -Product as Function of Nitrogen Content

Nitrogen not important (Isberg!!!!

J. Isberg et al., Diam. Rel. Mat. 13 (2004) 872.

5. Properties of Poly-Crystalline CVD Diamond

Density-of-State Distribution

Charrier Propagation: Trapping and Emission Dominated

Re-Emission Time Constant
$$\tau$$
: $\nu(E) \tau \ge 1 \implies \tau(E) = \frac{1}{\nu_o} e^{\frac{\Delta E}{kT}}$

Where: $v_0 = 10^{12}$ to ¹³ 1/s (Raman Frequence)

Thermalization of Carriers into the DOS

Diamond is: ULTRA COLD

Assumptions: T = 300 K, $v_o = 10^{13}$ 1/s

TOF Set-Up

TOF on PCD

Deep trapping of carriers (electrons and holes) in undoped CVD diamond

The same features for electrons and holes: Traps or defect, which can be occupied by electrons and holes!

6. Spectrally Resolved Photoconductivity

$$\frac{j_{ph}(h\nu)}{\Phi_{o}(h\nu)} \approx \tau_{n}\alpha(h\nu)$$

where:

 j_{ph} : photo-current Φ_o : photon flux τ_n = lifetime $\alpha(h\nu)$ = absorption coefficient

© Fraunhofer IAF

Set-Up

Spectrally Resolved PC and PTD Spectroscopy

Spectrally Resolved PC:

Thermally Stimulated Currents

Thermally Stimulated Currents in PCD and Single CD

Model:

7. Contact Properties

Metal Workfunction (Sze) Φ_{m}

Fig. 4 Metal work function for a clean metal surface in a vacuum versus atomic number. Note the periodic nature of the increase and decrease of the work functions within each group. (After Michaelson, Ref. 9.)

Au Workfunction (S. Gonda, PhD Tokyo Institut of Technology 1995)

Au TPYS of AU: a) measured after 30 min, b) after 150 min in-situ evaporation in a vacuum of 4x10⁻⁸ Torr c) ex-situ evaporation

Au TPYS spectrum measured a) after 30 min and b) after 150 min. in-situ evaporation at 5×10^{-10} Torr

TPYS on Au at DRC/AIST:

Workfunction 4.27 eV

Real Schottky Contact

Surface Fermi-level pinning by surface defects

Schottky barrier is not dependent on metal.

Schottky Properties: Clean and Oxygen Terminated Diamond

Cleanness: SEM image of Bar-Contact structures

partially wiped in ethanol

© Fraunhofer IAF

Cleaning by contact mode AFM

Tapping Mode AFM Surface Morphology

> Contact Mode AFM Cleanning

Surface is covered with a thin (1 -10) nm thick adhesive layer.

AFM Image

SEM Image

Fraunhofer

B. Rezek, C.E. Nebel, M. Stutzmann Diam. and Rel. Mat. 13, 740-745 (2004) 8. Summary:

Alles ist einfacher, als man denken kann,

zugleich verschränkter, als zu begreifen ist.

Johann Wolfgang von Goethe

© Fraunhofer IAF