

High Rate Diamond Detectors for Heavy Ions

Roman Gernhäuser, TU-München

- ultra thin detectors for REX-ISOLDE
- tracking detectors for R3B
- prototype production
- further developments

Diamond Beam Monitor for MINIBALL

10 mm open diameter 10-12 μm PC-CVD film 9 segments silicon ring for mechanical stability calibration by single particle counting or at high intensity, Faraday Cup (10⁸ 1/s)

from Diamond Materials

R3B (Reactions with Relativistic Radioactive Beams) Setup

61m

Measurement of all kinematic variables in a HI reaction secondary beams have a large spot size $(4 \times 5 \text{ cm})!$

 → high resolution tracking to the target, radiation hard (SFRS) 10⁶ cm⁻¹ s⁻¹
material budget limits the resolution and rate capability of the whole spectrometer. (Multiple scattering in the last tracking layer)

metallization layer:

- 50 x 50 mm, PC-CVDD
- $d = 150 \ \mu m$ (thinner material is hard to handle)
- Al layer with lithographic structures
- $x : 200 \ \mu m$ pitch (limited by multiple scattering)
- y : 1mm pitch for optional TOF
- only digital position information (PC-CVDD)
- multiplexed readout in vacuum (power consuption)
- event Rate up to 10^5 @ 10^7 1/s

Local Charge Collection

36 MeV ⁶Li

Larger Area Detector

8 prototypes produced 4 operational lithography under control

Front side: 128 strips 170 µm wide 20 µm gap Backside: 16 strips

parts in vacuum

APV Revision 3.0

why can we use readout electronics designed for silicon detectors also in diamond?

> $W_{dia} \sim 4W_{Si}$ d _{dia} ~ 0.5 d_{Si} CCD ~ 0.1 d_{dia}

but we have HI $\Delta E \sim Z^2$ Z=32 gains 1000

64 ch. Input diode array capacitive splitter 64 pin connector pitch adapter APV ADC and control interface

Prototype Test @ GSI

150mm material just to limit the risk

R3B and the Super-FRS

Preamplifier Options

PADI, a fast Preamplifier – Discriminator for Time-of-Flight Measurements M. Ciobanu, N. Herrmann, K. D. Hildenbrand, M. Kiš, A. Schüttauf IEEE Conf. Proc. (2006)

http://www-rpc2010.gsi.de

DBA II, DBA III, DBA4, P. Moritz,GSI development

HADES diamond readout W. Koenig,GSI development

W.Koenig used in HADES 2010 -> J. Pietraszko

Part Number	Impedance (at 100MHz/20°C)	Impedance (at 1GHz/20°C)	Rated Current	DC Resistance(max.)
BLM15HG601SN1	600ohm±25%	1000ohm±40%	300mA	0.7ohm
BLM15HG102SN1	1000ohm±25%	1400ohm±40%	250mA	1.1ohm
BLM15HB121SN1	120ohm±25%	500ohm±40%	300mA	0.7ohm
BLM15HB221SN1	220ohm±25%	900ohm±40%	250mA	1.0ohm
BLM15HD601SN1	600ohm±25%	1400ohm±40%	300mA	0.85ohm
BLM15HD102SN1	1000ohm±25%	2000ohm±40%	250mA	1.25ohm
BLM15HD182SN1	1800ohm±25%	2700ohm±40%	200mA	2.2ohm

Optimum solution

Next Milestones:

Test experiment 2011 @ GSI TDR in 2011

Acknowledgements: Sabine Schwertel, Wolfgang Koenig, Jurek Pietraszko and Chiara N.