Exciting News

Diamond-on-Iridium

Sensors

Elèni Berdermann, GSI Darmstadt

Helmholtz Zentrum für Schwerionenforschung

OUTLINE

ELECTRICAL CHARACTERIZATION of DIA-ON-IR; DoI-DETECTOR CHARACTERISTICS in 2010

- □ INTRODUCTION
- DESCRIPTION of THE MEASUREMENTS: I_{IND}; Q_C
- **TCT SIGNALS Charge Transport; Internal Field;** $\sigma_i(t)$
- ALPHA SPECTROSCOPY Crystal Structure; CCE; δΕ/Ε
- SUMMARY and Preliminary Conclusions
- CHARACTERIZATION Next Steps

CONTRIBUTING

DETECTOR LABORATORY

- Mircea Ciobanu
- Shahinur Rahman
- Carmen Simons
- Michael Träger
- 🗆 EBe

ACCELERATOR HF GROUP

Peter Moritz

TARGET LABORATORY

- Willy Hartmann
- Annett Hübner
- Birgit Kindler
- Bettina Lommel

UNIVERSITY OF AUGSBURG

- Stefan Dunst
- Martin Fischer
- Stefan Gsell
- Matthias Schreck
- Christian Stehl

INTRODUCTION

TESTED DOI SAMPLES in 2010

FREESTANDING $A = (3.5 \times 3.5) \text{ mm}^2$ both sides polished

METALLIZATION

Ti/Pt/Au (50/50/100)nm annealed (500 ^oC) 4Q-motif (growth-s.); solid electrode (nucl.s.) MFDIA-886-1, d = 290µm (July 2010) MFDIA-886-2, d = 320µm (July 2010)

INTRODUCTION BIREFRINGENCE IMAGES

MFDia-886-1, d = 290µm, MFDia-886-2, d = 320µm,

<image><image>

2nd CARAT Workshop, DEC 2010

THE MEASUREMENTS

2nd CARAT Workshop, DEC 2010

IV CHARACTERISTICS

CS-886-1, d = 290µm (2010)

ground electrode

2nd CARAT Workshop, DEC 2010

2nd CARAT Workshop, DEC 2010

THE MEASUREMENTS

DUAL-CARRIER DRIFT MODE; HIGH IONISATION

THE MEASUREMENTS SIGNAL PROCESSING: INDUCED CURRENT/COLLECTED CHARGE

Q_c ∝ BB-Signal Area:

$$I_{tr}(t, E) = I_0 \cdot \left(1 - e^{-t/R_i C}\right)$$
$$0 \le t \le t_{tr}$$

CHARGE-SENSITIVE

 $Q_c \propto CS$ -Peak Amplitude:

$$U_{peak}(E) = \frac{\int I_{tr}(t,E) dt}{C_f} = \frac{Q_C(E)}{C_f}$$

Exciting News from Diamond-on-Iridium Sensors

2nd CARAT Workshop, DEC 2010

HP2 CC, Paris Sep 2010

CARAT - Advanced Diamond Detectors

HP2 CC, Paris Sep 2010

CARAT - Advanced Diamond Detectors

MFDIA886-2; Q2 'pumped' Negative Bias - 480 - 640 - 800

2nd CARAT Workshop, DEC 2010

- 320

Exciting News from Diamond-on-Iridium Sensors

[V]

TAKE TCT SIGNALS for SERIOUS and EXTRACT CHARGE DRIFT PARAMETERS

VERY-VERY PRELIMINARY !!!

M. Pomorski, PhD Thesis

TAKE TCT SIGNALS for SERIOUS and EXTRACT CHARGE DRIFT PARAMETERS

CARAT - Advanced Diamond Detectors

BEAM TESTwith ⁴⁰Ar, 200AMeV; 6MHz/spill=4s

ORIGINAL TC SIGNALS RECORDED by REMOTE CONTROLLED DSO, 6GHz BW, 20GS/s

Fast uniform rise time; good S/N ratio \rightarrow expecting good $\sigma_i = \sigma_N / (dV/dt)$ FWHM ~ 1.3 ns \rightarrow RateC = 700 MHz/detector channel

HP2 CC, Paris Sep 2010

CARAT - Advanced Diamond Detectors

TIME RESOLUTION

BEAM TESTwith ⁴⁰Ar, 200AMeV; 6MHz/spill=4s

INTRINSIC TIME RESOLUTION of DoI SAMPLES COMPARED TO sc- and pcCVDD detectors

 $\alpha - SPECTROSCOPY$ using CSTA2 preamps (U. Bonnes, TUD)

MEASURED ENERGY [keV]

MFDia724b, $d = 12 \mu m$ (2009) MFDia886-1, $d = 290 \mu m$ (2010)

HP2 CC, Paris Sep 2010

MFDia886-1_Q1 (2010)

2nd CARAT Workshop, DEC 2010

CHARGE COLLECTION - CRYSTAL HOMOGENEITY MFDia886-2_Q1,Q3 (2010) comp. to a thick scCVDD (390µm)

2nd CARAT Workshop, DEC 2010

SUMMARY AND PRELIMINARY CONCLUSIONS

- □ Low dark conductivity; order of 10⁻¹³ 10⁻¹² A
- 'Narrow' TCT signals of fast rt << 80 ps; 0.5 < FWHM < 2.4 ns corresponding to (preliminarily!!) very high v_{dr} values; e-v_{drmax} = 415 μm/ns and e-μ_{dr}(1V/μm) ~ 3080 cm²/Vs (!!)
- **CCE**_α; ~ 90% 97%
- **Intrinsic time resolution**; $\sigma_i = 25 \text{ ps}$
- □ Energy resolution; $\delta E/E \approx 3 4\%$

CVD-DOI is a DEFECTIVE SINGLE CRYSTAL DIAMOND MATERIAL

THE SHORT CHARGE DRIFT COMBINED WITH A HIGH CCE

IS PRESENTLY NOT WELL UNDERSTOOD!!

2nd CARAT Workshop, DEC 2010

DOI CHARACTERIZATION - NEXT STEPS

□ Systematic analysis of TCT signals: FWHM vs. E_D □ CCE(E_D) vs. T_{TR} (E_D) to estimate mean $\tau_{e,h}$

NEW MEASUREMENTS applying/removing shortly HV (proposal Christoph Nebel)

any other proposal is also welcome