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Very Forward Region of the ILD Detector
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Content

Charge collection in the diamond detector
Polarization effects
CCD vs dose – test beam studies
Beam pumping tests
Measurements at PITZ, application at FLASH
Sapphire and Quartz sensors – first results
Summary
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‘Ideal’ crystal charge collection
CCE = Qcollected/Qproduced CCD = CCE*d

Charge collection efficiency depends on E
CCD vs HV, not irradiated sample
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Radiation damaged crystal
Radiation causes local damages of the lattice 
structure
These local damages (traps) are able to capture free 
charge carriers and release them after some time

Assumptions we are using:
Trap density is uniform 
(bulk radiation damage)
Traps are created 
independently           
(linearity vs dose)

electrons

holes

Ionization
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Irradiation of scCVD Diamond
DALINAC, TU-Darmstadt June 2007

After 5 MGy dose diamond 
detector is operational
CCD is decreasing with the 
absorbed dose
Generation of trapping 
centers due to irradiation
Traps release?
CCDcurrent < CCDMIP?
Too high ‘missing charge’ 
~Natoms in the sample
Pure trapping mechanism is 
contradictory
Recombination is important
Polarization?

‘missing charge’
CCD from 90Sr setup

CCD from Isens



15 December 2009 CARAT Workshop, GSI, Darmstadt 7

Irradiation of scCVD Diamond

No annealing!
1.5 years, a lot of tests 
with 90Sr Source,    UV-
light, several TSC 
measurements
After 10 MGy absorbed 
dose MIP signal is still 
detectable
Leakage current is very 
small ~pA

So14_04 scCVD Diamond Irradiation
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CCD vs dose

So14_04 scCVD Diamond Irradiation
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Polarization origin

+ -
EextUniform generation of e-h pairs

Asymmetry is introduced by the 
applied electric field
Specific free charge carrier density Specific free charge carrier density Specific free charge carrier density 
is largest near detector edgesis largest near detector edgesis largest near detector edges
Asymmetric trap filling according to Asymmetric trap filling according to Asymmetric trap filling according to 
charge carrier densitycharge carrier densitycharge carrier density
Space charge creation in the bulk of Space charge creation in the bulk of Space charge creation in the bulk of 
the detectorthe detectorthe detector
Compensation of the external field Compensation of the external field Compensation of the external field 
by space chargeby space chargeby space charge
PolarizationPolarizationPolarization
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Polarization origin

Epol

+ -
EextUniform generation of e-h pairs

Asymmetry is introduced by the 
applied electric field
Specific free charge carrier density 
is largest near detector edges
Asymmetric trap filling according to 
charge carrier density
Space charge creation in the bulk of 
the detector
Compensation of the external field 
by space charge
Polarization

E

E0
0 depth
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Model: 340 µm scCVD diamond after 5 MGy
CCD time dependence

time

Space charge Charge collection distance

Electric field
Expected Signal shape

Neg Pos

Initial field

Low field,
recombination

Effective charge collection regions
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Model: 340 µm scCVD diamond after 5 MGy
CCD time dependence

time

Space charge Charge collection distance

Electric field
Expected Signal shape

Neg Pos

Zero field

E



15 December 2009 CARAT Workshop, GSI, Darmstadt 16

Model: 340 µm scCVD diamond after 5 MGy
CCD time dependence

time

Space charge Charge collection distance

Electric field
Expected Signal shape

Neg Pos

To be confirmed!
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Long-term signal evolution

Try to minimize an 
influence of the 
measurement onto the 
filled trap distribution
Use the source only for 
short CCD evaluation 
runs
Polarization is seen even 
after 1 month after the 
initial pumping – long 
living traps, possibility 
to fill all of them!
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MIP Response of scCVD Diamond
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Damaged Sensor under 90Sr 
Source: CCD vs time

scCVD Diamond  90Sr -test after 10 MGy Dose
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Damaged Sensor under 90Sr 
Source: CCD vs time

scCVD Diamond  90Sr -test after 10 MGy Dose
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Damaged Sensor under 90Sr 
Source: CCD vs time

scCVD Diamond  90Sr -test after 10 MGy Dose
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Damaged Sensor under 90Sr 
Source: CCD vs time

scCVD Diamond  90Sr -test after 10 MGy Dose
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Beam Pumping Test

Trigger Box Linear Drive

90Sr Source

Collimator

Faraday Cup

Detector+Preamp Box

Collimator

Beam

Use intensive 
beam to fill up 
short living traps

Move (remotely) 
detector/preamp 
box to the low 
intensity 90Sr line

Measure signal 
evolution with 
time since 
beam-off
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Beam Pumping Test
Dose rate ~ 100 x highest dose rate @ ILC detector

Clear indication to the presence of fast decaying traps. 
Additional polarization due to shallow traps filling
Faster trap release at higher bias voltage: “Poole-Frenkel”-like effect?

So14-04  10 MGy  +/-200 V 0.1 Hz (2) Beamtest
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TSC measurements

At least 3 levels are 
visible:

temperature [K]
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After 5 MGy

Trap concentration ~1014-1015 cm-3 (still 8 orders of 
magnitude less than normal atom density)
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CCD0 vs Dose – free traps case
Are thin sensors more radiation hard?

Plan: irradiate thin (~100 µm) sensor at the test beam in Feb 2010

sCVD Diamond Sensor
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Sapphire and Quartz Sensors

Element Na Si Fe Ca Mg Ni Ti Mn Cu Zr Y

Impurity, ppm 8 2 5 5 1 <3 <1 3 <3 2 2

Impurity analysis of Sapphire  (Crystal GmbH data)

Band-gap: Quartz 8.4 eV, Sapphire 9.9 eV
(Diamond 5.5 eV, Si -1.12 eV)
Single crystal, size 10x10x0.5 mm3, cut 0001,   
available up to ~30 cm diameter wafers
Producer: Crystal GmbH, Berlin
Impurities: at some ppm level
Metallization: 200 nm Al or 50/50/200 nm Al/Ti/Au,    
4 pads 4x4 mm2 (1 pad 8x8 mm2 backside) done @GSI
First tests at the beam: TU-Darmstadt Dec 2008
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Sapphire radiation hardnessSapphire radiation hardness
Single crystal, 1x1x0.05 cm3

Metallization:  Al 200 nm or

50/50/100 nm Al/Ti/Au,

TU-Darmstadt test beam

December 2008

Ratio of the detector and 
Faraday cup currents

Initial charge collection

efficiency: few % (purity?)

~ 30 % of the initial charge collection efficiency after 12 MGy

Beam interruptions
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Quartz – raw data
Quartz Crb3 Sample
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We need more clean 
material, impurity 
should be at the ppb 
level!

(Both for quartz and 
sapphore)
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Test in PITZTest in PITZ

Bunch train 
trigger

Signal

Moving the sensor through an 
electron beam.

Bunch charge 1 pC – 1 nC,
Beam spot: few mm2

Beam profile

EMI doesn’t disturb operation

xRMS=3.36 mm
yRMS=3.29 mm

Diamond sensor was installed in
the vacuum of  the beam pipe

Electron beam, 14.5 MeV, bunches
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Application at FLASHApplication at FLASH
FCAL designed, constructed and 
installed a Beam-Condition Monitor at 
FLASH (4 diamond and 4 sapphire 
sensors

Operation in the “9 mA” run of FLASH 
was successful
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Summary
The performance of scCVD Diamond sensor was studied as a 
function of absorbed dose up to 10 MGy
Strong polarization effects are observed in the radiation damaged 
scCVD Diamond detector
Polarization significantly decreases the detector charge collection 
efficiency in addition to pure trapping mechanism
Method of routinely switching bias HV polarity allows to suppress 
bulk polarization of long-living traps
Beam pumping tests indicate that short-living traps are responsible 
for the residual detector inefficiency
Sapphire and Quartz sensors were studied at the test beam
Diamond sensor was studied at the PITZ facility (bunched beam)
8 Diamond and Sapphire sensors are installed at FLASH for beam 
dump diagnostic purposes
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Thank you
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Electric field calculations

Poisson Superfish program
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