

Very Forward Region of the ILD Detector

- Charge collection in the diamond detector
- Polarization effects
- CCD vs dose test beam studies
- Beam pumping tests
- Measurements at PITZ, application at FLASH
- Sapphire and Quartz sensors first results
- Summary

'Ideal' crystal charge collection

 $CCE = Q_{collected} / Q_{produced}$ $CCD = CCE^*d$

Charge collection efficiency depends on E

CARAT Workshop, GSI, Darmstadt

Radiation damaged crystal

- Radiation causes local damages of the lattice structure
- These local damages (traps) are able to capture free charge carriers and release them after some time
- Assumptions we are using:
- Trap density is uniform (bulk radiation damage)
- Traps are created independently (linearity vs dose)

Irradiation of scCVD Diamond

DALINAC, TU-Darmstadt June 2007

Irradiation of scCVD Diamond

Continued in December 2008

- No annealing!
- mm 1.5 years, a lot of tests with ⁹⁰Sr Source, UVlight, several TSC measurements
- After 10 MGy absorbed dose MIP signal is still detectable
- Leakage current is very small ~pA

So14_04 scCVD Diamond Irradiation

- Uniform generation of e-h pairs
- Asymmetry is introduced by the applied electric field
- Specific free charge carrier density
 is largest near detector edges
- Asymmetric trap filling according to charge carrier density
- Space charge creation in the bulk of the detector
- Compensation of the external field
 by space charge
- > Polarization

- Uniform generation of e-h pairs
- Asymmetry is introduced by the applied electric field
- Specific free charge carrier density is largest near detector edges
- Asymmetric trap filling according to charge carrier density
- Space charge creation in the bulk of the detector
- Compensation of the external field
 by space charge
- > Polarization

- Uniform generation of e-h pairs
- Asymmetry is introduced by the applied electric field
- Specific free charge carrier density is largest near detector edges
- Asymmetric trap filling according to charge carrier density
- Space charge creation in the bulk of the detector
- Compensation of the external field
 by space charge
- > Polarization

E _{ext}	
+ -	

- Uniform generation of e-h pairs
- Asymmetry is introduced by the applied electric field
- Specific free charge carrier density is largest near detector edges
- Asymmetric trap filling according to charge carrier density
- Space charge creation in the bulk of the detector
- Compensation of the external field
 by space charge
- > Polarization

- Uniform generation of e-h pairs
- Asymmetry is introduced by the applied electric field
- Specific free charge carrier density is largest near detector edges
- Asymmetric trap filling according to charge carrier density
- Space charge creation in the bulk of the detector
- Compensation of the external field by space charge
- Polarization

Model: 340 µm scCVD diamond after 5 MGy **CCD** time dependence

Model: 340 µm scCVD diamond after 5 MGy CCD time dependence

Model: 340 µm scCVD diamond after 5 MGy CCD time dependence

Long-term signal evolution

- Try to minimize an influence of the measurement onto the filled trap distribution
- Use the source only for short CCD evaluation runs
- Polarization is seen even after 1 month after the initial pumping – long living traps, possibility to fill all of them!

CARAT Workshop, GSI, Darmstadt

CARAT Workshop, GSI, Darmstadt

CARAT Workshop, GSI, Darmstadt

Short living traps

CARAT Workshop, GSI, Darmstadt

Beam Pumping Test

Use intensive beam to fill up short living traps

> Move (remotely) detector/preamp box to the low intensity ⁹⁰Sr line

Measure signal evolution with time since beam-off

CARAT Workshop, GSI, Darmstadt

Beam Pumping Test

Dose rate ~ 100 x highest dose rate @ ILC detector

- Clear indication to the presence of fast decaying traps.
- Additional polarization due to shallow traps filling
- Faster trap release at higher bias voltage: "Poole-Frenkel"-like effect?

ADC C

TSC measurements

	trap1	trap2	trap3	
Ec-E _T [eV]	1.144 +0.002	0.851 +0.002	0.746 +0.006	
n _T ⁰ [10 ¹⁴ cm⁻³]	5.7	1.5	0.2	- 44

magnitude less than normal atom density)

CCD₀ vs Dose - free traps case

Are thin sensors more radiation hard?

Plan: irradiate thin (~100 μm) sensor at the test beam in Feb 2010

Sapphire and Quartz Sensors

- Band-gap: Quartz 8.4 eV, Sapphire 9.9 eV (Diamond 5.5 eV, Si -1.12 eV)
- Single crystal, size 10x10x0.5 mm³, cut 0001, available up to ~30 cm diameter wafers
- Producer: Crystal GmbH, Berlin
- Impurities: at some ppm level
- Metallization: 200 nm Al or 50/50/200 nm Al/Ti/Au, 4 pads 4x4 mm2 (1 pad 8x8 mm² backside) done @GSI
- First tests at the beam: TU-Darmstadt Dec 2008

Element	Na	Si	Fe	Ca	Mg	Ni	Ti	Mn	Cu	Zr	Y
Impurity, ppm	8	2	5	5	1	<3	<1	3	<3	2	2

Impurity analysis of Sapphire (Crystal GmbH data)

Sapphire radiation hardness

 ~ 30 % of the initial charge collection efficiency after 12 MGy

Quartz – raw data

We need more clean material, impurity should be at the ppb level!

(Both for quartz and sapphore)

Test in PITZ

Electron beam, 14.5 MeV, bunches

Diamond sensor was installed in the vacuum of the beam pipe

Moving the sensor through an electron beam.

Bunch charge 1 pC - 1 nC, Beam spot: few mm² Beam profile

EMI doesn't disturb operation

CARAT Workshop, GSI, Darmstadt

Application at FLASH

FCAL designed, constructed and installed a Beam-Condition Monitor at FLASH (4 diamond and 4 sapphire sensors

Operation in the "9 mA" run of FLASH was successful

15 December 2009

CARAT Workshop, GSI, Darmstadt

Summary

- The performance of scCVD Diamond sensor was studied as a function of absorbed dose up to 10 MGy
- Strong polarization effects are observed in the radiation damaged scCVD Diamond detector
- Polarization significantly decreases the detector charge collection efficiency in addition to pure trapping mechanism
- Method of routinely switching bias HV polarity allows to suppress bulk polarization of long-living traps
- Beam pumping tests indicate that short-living traps are responsible for the residual detector inefficiency
- Sapphire and Quartz sensors were studied at the test beam
- Diamond sensor was studied at the PITZ facility (bunched beam)
- 8 Diamond and Sapphire sensors are installed at FLASH for beam dump diagnostic purposes

Thank you

Electric field calculations

Poisson Superfish program

