

"Lossless" Broadband Signal Transfer

Carat 1st Workshop P. Moritz, RF Dpt. GSI Helmholtz Zentrum für Schwerionenforschung GmbH, Darmstadt

To loose or no loss – Is it a question ?

Radiation level **High energy physics – Wide experimental areas**

Diamond Detectors – fast risetime, short pulses, random signals

– Damage to electronics

Acquisition electronics far away from detector frontends -> Broadband Detector Signal Transfer

> Use lossy wires, coax etc. or "Not so lossy" optical fibers

Now a brief look at it...

Motivation

Demands

- Signal transfer from very fast Detectors to Analysis Crates in the Distance
- Time-of-Flight (TOF) Measurements
- Amplitude Spectra Measurements

"Linear Time Invariant" (LTI) – System recommended!

Requirements for Broadband Detector Signal Transfer			
Transfer of RF-Frequencies:	> 1 GHz		
Distances:	> 100 m 10 km		
Dynamic Range:	> 1:100, 40dB		
Transfer Link Budget	1:1, Link Gain = 0 dB		
Timing rms:	< 30 ps maintained		

Transfer of Broadband Signals over long Paths

A "lossy" Nightmare: Coaxial Cable

Attenuation loss, frequency dispersion, propagation delay drift@temperature: much to high if path length exceeds some 10s of meters almost everybody has had problems using long coax runs

A "lossless" Dream: Analog RF Optical Fiber Links !

- ~ 0.3 dB/km attenuation for single-mode 9 μ m fibers,
- very low frequency dispersion (group delay) at GHz bandwidth,
- propagation delay drift of standard fibers (30 ppm/K) -> 200 ps/(km*K)
- Optical RF transfer systems on market, known as "Optical RF Links"
- Signal Transfer Link Budget 1:1 flat into GHz

"Optical RF – Link" or "RF over fiber", how it works

Optical Fibers, the Signal Transfer Medium

Optical Standard Fibers (SMF28)

- Most common fiber in use, several producers, low-cost
- Available in mechanical rugged versions
- Temperature drift: 30 ppm/K = 150 ps/km*K
- Propagation dispersion (group delay) very flat
- Propagation constant: ß=0.66c (like PE coax)
- Common wavelength bands: 1550 nm and 1310 nm
- Frequencies: 197 THz and 247 THz
- Available bandwidth: several THz
- Electrical isolation: exceptional
- Radiation hardness: average
- Costs: ~ 1€/ m + 50€ connector assembly (FC/APC type)

Optical Signal Transfer - Analog or Digital ?

Digital Transmission Systems

Digital optical communication systems on market:

- time quantization with the bitrate (eg. 100ps for 10G System)
- fast amplitude quantization (ADC) required at detector frontend
- synchronous clocks used -> preventing time invariance
- Cost advantage for time-sequential multichannel transfer

Analog Transmission Systems

- ✓ One optical link and fiber per channel or
- ✓ Multiplexing channels to a single fiber
- ✓ Preserve detector signal properties in time and amplitude
- ✓ Time invariance, mandatory for TOF

Optical Fiber RF-Links

- Broadband analog "optical rf-links" on market
- Available from stock
- No need to develop new electronics for signal transfer
- Bandwidth 100kHz...2GHz or more, linear and time invariant
- Available at any level:

devices, modules, boards, link stations, distribution systems

- Bidirectional analog links available using a single fiber
- Can work on different wavelengths
- Transfer of multiple channels:

Parallel -one optical fiber per channelMultiplexed - WDM / CWDM / DWDM – bundles

Parallel Signal Transfer

WDM - Wavelength Division Multiplexing

 λ_0 = 1310 nm, λ_1 = 1550 nm - Channel Separation by Laser Bands

CWDM - Coarse Wavelength Division Multiplexing

DWDM - Dense Wavelength Division Multiplexing

 λ_0 =1310 or 1550nm

WDM, CWDM or DWDM Channel Demultiplexing

m

000 000

0001

"Lossless" Broadband Signal Transfer

One Third Rack

RF-Optical Links - Market Variety

pable connection and summary alarm contacts for
e. The card cage can be ordered with up to ten re
modules at any available frequency of
combination of L-Band tranmitters or rece
Für weitere Informationen - fragen Sie un

Card Cage

Power Supply

L-Band Receiver

-Band Transmitte

C-Band Receiver

Broadhand Receive

Multiple Receiver Card Cage

000-

PS-0CC-

OCCR-103000-

OCCT-103000-

OCCR-3442-1

OCCR-95012750

MITEG

10-3000 MHz

10-3000 MHz

3.4-4.2 GHz

trieb für Deutschland, Schweiz, Öst

0.95-12.75 GH

One Third Rack Unit Fiber Optic Transmitter and Receiver Fiber Optic Link Models

Fiber Ontic Receiver Models

3.4-4.2 GH

3.4-4.2 GH

0.95-12.75 GH

10-3000 M

34-42 GI

0.95-12.75 6

ter Models

OL-103000-0L-3442-1

OL-95012750-

ORT-103000-ORT-3442-1

ORT-95012750-

ORM-103000-1

ORM-3442-1

Fiber Optic Tran

a a

√1 ViaLite®

Wideband Fibre Optic Link

• 2kHz to 4.2GHz bandwidth operation

Anter Albert

- Suitable for SatCom / WiMax / WiFi / Cellular / TETRA and other applications
- Superior Linear Performance and Low Noise
- High Spurious Free Dynamic Range negligible signal loss
- Transmits all signal formats
- Transmission distances of >50km
- Interfaces with M&C systems for remote monitoring
- Multiple signal carrier transmission
- SNMP Network Control Module Compatible

Dec, 13-15, 2009

A specs example	Specifications		
	Characteristics	Data	Units
(from REPA 19" nlug_in)	Frequency range	25 KHz - 1000 MHz	MHz
	Wavelength	1360	
	Тур.	1310	nm
	Min	1290	
	Optical output power	2 < Po < 4	mW
The link gain	link gain (for 0 dBo)	+/- 2	dB
hudget	Flatness	+/- 2,5	dB
budget	Input power for rated output power	0	dBm
	Max. RF input power	20	dBm
	In impedance nom.	50 ***	Ohms
Equates to 15dB	Input VSWR	1,5 : 1	
	Relative intensity noise	-135	dB/Hz
dynamic range in 🔨	Intercept point 3 rd Order typ.(link)	30	dBm
1Ghz Bandwidth	Alarm (over current)	dry loop	
	Optical connectors	FC/APC *	
	Fiber loss	0,4	dB/km
	optical connectors loss	0,5	dB/paire
FC/APC is	Typical RF link NF	40 **	dB
	RF connectors	SMA female	
recommended	Storage temperature range	-40 °C + 85	° C
standard !	Operating temperature Range	-20 °C + 60	° C
	Power Supply	12 V DC +/- 5 %	
	size (W x L x H)	7 F x 175 mm x 3 U	mm
	All data at room temperature + 22 °C.	into 50 Ohms, subject to change without notice	•

A second example (from ppm, 4 GHz wideband devices)

RF Performance Characteristics

	Rack Module Wideband Link	OEM Module Wideband Link		
Frequency Range	2 kHz – 4.2 GHz	2 kHz – 4.2 GHz		
Link Gain (nominal)	0 dB ^{a b}	0 dB ^{a b}		
Flatness (max) ^a	±1 dB (10MHz – 3GHz), ±1.5 dB (3 - 4.2GHz), +2.5/-1.5 dB (2kHz - 10MHz)	±1 dB (10MHz - 3GHz), ±1.5 dB (3 - 4.2GHz), +2.5/-1.5 dB (2kHz - 10MHz)		
Gain Stability (max)	±3 dB over operating temperature range	±3 dB over operating temperature range		
VSWR (50 Ohm)	<2:1 ^t	<2 : 1 ^t		
CNR	>107 dB ^{acdt}	>107 dB ^{acdt}		
Noise Figure	23 dB act	23 dB act		
Input P1dB	+3 dBm ^{ct}	+3 dBm ^{ct}		
Maximum Input Power (without damage)	+15 dBm	+15 dBm		
Output IP3	+13 dBm ^{b ct}	+13 dBm ^{b ct}		
Input IP3	+13 dBm ^{ct}	+13 dBm ^{ct}		
SFDR	109 dB Hz 2/3 ^{bt}	109 dB Hz 2/3 ^{bt}		
External LNA Voltage	Option for the module to come with +5V or +12V feed from RF input of Tx	External LNA feed can be supplied into pin on Tx module which is directed out of centre pin on RF input connector		
^a nominal input power (-10 dBm) ^b 0 dB optical loss ^c @ 1.2GHz ^d 2.4kHz bandwidth ^t typical				

Confused after all this Specs and Electronics Gaga?

Now: An Attempt for a "Step-Receipe"

Optical RF Links – ORFL Step-Receipe Version 1.0

- 1: Link Bandwidth Use preamp frequency response or calculate: $F_{min} \sim 1 / (10^* \text{ pulsewidth}), F_{max} = 0.35 / t_{rise}$
- 2: Output Peak Voltage Take the peak voltage data from frontend output 0 dBm = 223mVrms or 320mVpeak

Do not use pp value data, you have single unidirectional pulses!

- 3: Dynamic Range Your minimal signal from frontend must be above link noise floor output
- 4: Check Discriminator Input Voltage The backend acquisition system may need additional amplification after the optical link receiver!
- 5: Optical Connectors Use FC/APC unless other specs must be met
- 6: Contact appropriate Vendor
- 7: Check Costs Parallel links and fibers or multiplexing (C/DWDM)

An Example

Beamloss data acquired with diamond detectors using rf optical links

Conclusion and Outlook

- Use of broadband optical rf-links (ORFL) and single mode fibers for detector signal transfer makes separation of the frontends possible
- Kilometer-long path runs are easily achieved with "ORFL"
- ORFL components readily available from vendors
- Market competition provides second sources
- Headroom to use bandwidths beyond 10 GHz per channel
- Transfered signals carry correct timing information -> TOF
- Optical transfer system can be upgraded anytime
- CWDM and DWDM share the same receivers and single mode fibers, different muxers/demuxers/lasers needed
- Start-up at moderate costs for one or a few channels possible
- DWDM can be merged into CWDM systems
- Digital systems can be embedded in analog systems in C/D/WDM