

Jose A. Dueñas, University of Huelva (Spain) jose.duenas@dfa.uhu.es

J.A. Dueñas & I. Martel Department of Applied Physics University of Huelva (Spain) Universidad de Huelva

Física Aplicada

The detector

- ♦ SC-CVD diamond film 50 μ m thickness (4×4 mm²).
- Ohmic contacts: DLC (3 nm) / Pt (16 nm) / Au (200 nm).
- Al wire bonding connections.
- Transmission type mounting.
- Final capacitance of the detector 9.5 pF.

The experimental Setup

- Electronics \leq 500 MHz for spectroscopy.
- Electronics \leq 2.5 GHz for time resolution.
- SC-CVD diamond 500 μm (same contacts) 3.3 pF.
- ♦ Front & Rear α-injection, or ± bias.

Universidad de Huelva

Física Aplicada

Jose A. Dueñas, University of Huelva (Spain) jose.duenas@dfa.uhu.es

Energy resolution

- ♦ $\Delta E \approx 30 \text{ keV}$ (2.4 V/µm for DD-50µm).
- Comparable to good Si detectors.
- $\Delta E \approx 17$ keV reported for DD-300 μ m.
- Energy shift between front & rear injection:
 - Radiation-induced polarization effect i.e. field distribution modified by trapped charges in the proximity of contacts.

Jose A. Dueñas, University of Huelva (Spain) jose.duenas@dfa.uhu.es

Charge collection efficiency (CCE)

- Obtained from a charge sensitive preamp.
- \clubsuit Calibration of the electronics with the Si-300 μm .
- 100% CCE for DD-50 μ m no matter injection side.
 - α -penetration \approx 13.5 μ m (no charge drift)
- CCE for DD-500 μm depents on the charge:
 99% hole drift (front injection).
 - 98% electron drift (rear injection). Needs higher electric field for charge collection.
 Indication of trapping.

Universidad

de Huelva

Pulse shape analysis (PSA)

- Fast electronics and good impedance matching.
- Transit time as FWHM:
 - DD-50 μ m, 0.94 / 1.15 ns for $E_f > 0 / E_f < 0$.
 - $\bullet\,$ DD-500 $\,\mu m,\,4.9$ / 7.8 ns for hole / electron drift.
- For 1 V/ μ m holes & electrons same contribution.
- Signal "undershoot" due to impedance mismatch.
- The "overshoot" of the DD-500 μm caused by charges close to the injection electrode.

Jose A. Dueñas, University of Huelva (Spain) jose.duenas@dfa.uhu.es

Trapping effect

- > DD-50 μ m pulse made of two peaks for E_{f} <0.
- Electrons take longer to be collected.
- Rise time measurements indicate so.
- Time difference is affected by the $E_f < 0$.
- Transition between curves caused by mismatch
- How much due to bulk and to electrodes??

Universidad

de Huelva

Física Aplicada

Parameters

TABLE I DIAMOND DETECTOR (DD) PARAMETERS SUMMARY. THE e and h subscripts denote electron and hole respectively.

	DD-500 μ m	DD-50 μ m
ΔE	28 keV	33 keV
ε_{Dia}	$12.7\pm0.1~\mathrm{eV}$	$12.7\pm0.1~\mathrm{eV}$
CCE_h	99%	100 %
CCE_e	98 %	100 %
$N_{eff_{h}}$	$2.27 imes 10^{11} { m ~cm^{-3}}$	$1.26 imes 10^{13} { m ~cm^{-3}}$
N_{eff_e}	$3.78 imes 10^{11} m \ cm^{-3}$	$1.26 imes 10^{13} { m ~cm^{-3}}$
t_{tr_h}	4.9 ns^a	0.94 ns c
t_{tr_e}	7.8 ns^b	1.15 ns d
v_{s_h}	$154\pm4~\mu$ m/ns	
v_{s_e}	$98\pm2~\mu$ m/ns	
μ_h	$2430\pm30~\mathrm{cm^2/Vs}$	
μ_e	$2145\pm45~\mathrm{cm^2/Vs}$	
$ au_h$	$2\pm0.5~\mu{ m s}$	
$ au_e$	$0.45\pm0.1~\mu\mathrm{s}$	

a	E_f = 1.15 V/ μ m	c E_f = 3 $V/\mu { m m}$
b	$Ef=-0.85~V/\mu{ m m}$	d E_{f} = -2.4 V/μ m

<u>Near future work</u>

- Study trapping at the bulk-electrode interface.
 - Asymmetric schottky (AI) ohmic contacts (DLC/Pt/Au).
- Time resolution with a diamond telescope dE = 50 μ m, E = 500 μ m.
 - three year ago we obtained <100 ps with dE = 110 μ m, E = 300 μ m.
- Radiation hardness of the samples.

We are opened to suggestions and collaborations

Jose A. Dueñas, University of Huelva (Spain) jose.duenas@dfa.uhu.es

Física Aplicada

