IBIC – ION BEAM INDUCED CHARGE ion microprobe technique for testing diamond detectors, application examples, perspectives

<u>Milko Jakšić</u> Laboratory for ion beam interactions Division for experimental physics Ruđer Bošković Institute

- 1. Facilities
- 2. IBIC
- 3. Application examples

1. RBI ACCELERATORS

Ruđer Bošković Institute

1. TANDEM ACCELERATOR FACILITY

Ruđer Bošković Institute

ION BEAM ANALYSIS

UNIQUENESS: numerous processes

1. ACCELERATORS – Available ion beams

Si

С

He

proton

<u>Good selection of ion ranges / dE/dx</u> <u>!!</u>

Silicon	l 127-	Si 28	C 12	He 4	H 1
Range(µm) E=1 MeV	0.37	1.13	1.6	3.5	16.3
Range (µm) E=10 MeV	3.7	4.8	9.5	69.7	709

1. ACCELERATORS – Available ion beams

1. ACCELERATORS – heavy ion microprobe

Transmission image of 11 MeV C³⁺ through Cu grid

Typical resolution 1 um Best resolution 0.4 um

1. ACCELERATORS – heavy ion microprobe

- **IBIC** single ion technique for imaging of microscopic distribution of charge transport properties !
- Imaging of grain boundaries, defects (such as dislocations), electric field (polarization),...

EFG silicon

Front

- **IBIC** single ion technique for imaging of microscopic distribution of charge transport properties !
- Imaging of grain boundaries, defects (such as dislocations), electric field (polarization),...

CVD diamend (1997)

τ - charge carrier lifetime

Velocity; $v = \mu E = d/T_R$ Mobility; $\mu = d^2/(T_R * V_{Bias})$

3. ION BEAM INDUCED DEFECTS

MICROSTRUCTURING OF DEFECTS

Irradiation of certain regions in test samples will increase defect concentration and decrease IBIC signal

R

3. ION BEAM INDUCED DEFECTS EVOLUTION OF DEFECT CONCENTRATION

Mobility of defects (as in CdZnTe)

Irradiated area

3. ION BEAM INDUCED DEFECTS EVOLUTION OF DEFECT CONCENTRATION

3. ION BEAM INDUCED DEFECTS

3. ION BEAM INDUCED DEFECTS RADIATION HARDNESS TESTS - SILICON

Si PIN diode

- irradiated by 9 fluences
- by p, He, Li, Cl of 5 um range
- tested by IBIC using protons

3. ION BEAM INDUCED DEFECTS RADIATION HARDNESS TESTS - SILICON

$K_{ed} \left({ m g/MeV} ight)$	H impl.Si	He impl. Si	Li impl. Si	Cl impl. Si
H probe	(4.1±0.4)•10 ⁻¹⁵	(8.6±0.3) • 10 ⁻¹⁵	(7.7±0.1) • 10 ⁻¹⁵	(1.22±0.01) • 10 ⁻¹⁴
He probe	no data	(1.44±0.06) • 10 ⁻¹⁴	(1.45±0.04) • 10 ⁻¹⁴	(1.49±0.01) • 10 ⁻¹⁴

3. ION BEAM INDUCED DEFECTS RADIATION HARDNESS TESTS – SC CVD DIAMOND

Diamond detectors 1 mm2, 500 um thick

Irradiation and IBIC tests by 11 MeV C ions

3. ION BEAM INDUCED DEFECTS RADIATION HARDNESS TESTS – SC CVD DIAMOND

>

Diamond detectors 1 mm2, 500 um thick +/- 500 V bias

Irradiation and IBIC tests by 8 MeV C ions

EU - FP7 NETWORK SPIRIT

Support of Public and Industrial Research using Ion beam Technology

- Transnational access
- Networking
- Joint research activities

SPIRIT Partners:

- ForschungszentrumDresden-Rossendorf (FZD)
- CNRS CENBG Bordeaux (CNRS)
- Katholieke Universiteit Leuven + IMEC (KUL)
- Jozef Stefan Institut Ljubljana (JSI)
- Universität der Bundeswehr München + TUM (UBW)
- CEA JANNUS Saclay and CIMAP Caen (CEA)
- University of Surrey (SUR)
- Institute Tecnologico e Nuclear Lisboa (ITN)
- University de Pierre et Marie Curie (UPMC)
- Rudjer Boskovic Institute Zagreb (RBI)
- Swiss Federal Institute of Technology (ETHZ)

ION BEAM MODIFICATION CONDUCTIVE LINES IN DIAMOND

Damage profile of 6 MeV C ions in diamond (SRIM simulation)

 ✓ if the diamond lattice gets damaged / distorted above a critical threshold, it converts to graphite upon thermal annealing
 ✓ graphite is a very different material with respect to diamond: it is soft, electrically conductive and etchable

> $< 9.10^{22} \text{ cm}^{-3} \rightarrow \text{(partial)}$ recovery of pristine structure upon thermal annealing

 $> 9.10^{22} \text{ cm}^{-3} \rightarrow \text{conversion}$ to a <u>graphite-like phase</u> upon thermal annealing

ION BEAM MODIFICATION

CONDUCTIVE LINES IN DIAMOND

evaporation of Cr-Au adhesion layer
deposition of semispherical Au contact mask
implantation with scanning ion microbeam
mask removal

A: Cr layerB: Au layerC: Au contact maskD: scanning ion beam (6 MeV C)E: buried graphitic channel

Implantation with three-dimensional masking

P. Olivero et al, Diamond Rel. Mat. (2008)

ION BEAM MODIFICATION

CONDUCTIVE LINES IN DIAMOND

Electrical characterisation:

.

R = 3.5, 1.5 M Ω channels $2\&3 + \text{geometry} \rightarrow \rho = 0.9, 1.1 \ \Omega \text{ cm}$