

Dr. Jan Grünert

European XFEL / DESY Hamburg, Germany <u>www.xfel.eu</u>

XFEL Foundation of the European XFEL GmbH

- European XFEL GmbH registered on Oct.8, 2009
- Non-profit company to:
 - Construct
 - Commission the XFEL machine
 - Operate
- International Convention was signed on Nov. 30, 2009

Management Board

XFEL Motivation

- We look for X-ray diagnostics
 - fast
 - accurate
 - durable in extreme XFEL conditions
- CVD diamond detectors might work for
 - XFEL x-ray intensity, position, timing
- What is the European XFEL ? What is FLASH ?
- How can we collaborate ? Tests for XFEL of
 - diamond detectors
 - fast DAQ
- open positions (see www.xfel.eu)

XFEL content

- European XFEL
 - the project
 - the international context
 - beamlines and facility parameters
- Pulse structure and energy
 - \rightarrow special requirements
- Diagnostics Concept
- Some devices: XGMD, XBPM, PES
- Diamond detectors

5

XFEL Peak brilliance of X-ray Sources

Free Electron Lasers:

- 4th generation light sources
- based on Linear Accelerators
- deliver ultrashort pulses:
 100 fs = 10⁻¹³ s or less
- (Transversely) spatially coherent (laser-like) radiation

December 14, 2009, 1st CARAT workshop, GSI / Darmstadt Jan Grünert, European XFEL

XFEL FLASH at **DESY**

- The first SASE FEL
- I GeV Superconducting Linear Accelerator
- Delivers VUV / soft X-rays
 - down to 6.5 nm
 - (+3rd, 5th harmonic!)
- Testbed for XFEL

MID Workshop, Grenoble, 28-29.10.2009 Resember Alter en of the care of the constant Jan Grünert, European XFEL

European XFEL

Hard x-ray FEL's in construction/commissioning

European XFEL Facility . 2014 - 30 000 p/s

XFEL April 10, 2009: the big news from LCLS!

First coherent hard X-rays

Figure 10: FEL x-rays at 1.5 Å on a YAG screen 50 m after the last inserted undulator (see Table 1 for measured parameters).

XFEL The European XFEL Project

- 5 beamlines (3 × SASE)
- 10-15 experiments

European

- 30,000 pulses/sec
- 10^{12} 3.7×10^{14} phts/pulse @ $1\text{\AA} 49$ Å
- flux: 1.5×1016 phts/(0.1% sec) @ 12.3 keV

Timeline:

June 5, 2007: Official funding of project by Germany and 12 international partners

Sept 2008: construction contracts

Jan 2009: start of construction

Nov 2009: foundation of the company (European XFEL GmbH)

June 2013: All buildings finished, start commissioning (2014)

June 2014: SASE 2 Å

June 2015: User operation, SASE 1 Å

10

XFEL Overall layout of the European XFEL

12

Initial configuration: SASE1, SASE2, SASE3 (planar) plus <u>six instruments</u>

XFEL Special requirements for E-XFEL diagnostics

13

slide by H.Sinn

XFEL Results Silicon during 600 µsec pulse train

15

XFEL Results diamond

XFEL When monitoring photons and why ?

European

XFEL Concept Overview Diagnostics

baseline devices

	property		pulses per train	online device	absolute value
XGMD	intensity	Х	full	Х	Х
MCP-based detector	intensity 2D image	X -	< 30 pulses	-	-
K-Monochromator	spectrum	_	few	-	-
ХВРМ	position profile	X _	full	х	-
Imager	2D image	-	full	-	-
Photoionization Spectrometer	oionization spectrum strometer polarization		full	х	х

comusiesioning !

[1] J.Grünert, Concept - Photon Diagnostics for the European XFEL, 09/2009

XFEL SASE1 schematic

XFEL Concept Overview Diagnostics

- advanced devices (R&D)
 - pulse-resolved wavefront sensor
 - (online) measurement of transverse coherence
 - photon beam arrival monitor
 - temporal pulse shape and pulse overlap monitor
- other devices
 - Intensity detector at the beam stop (e.g. "intelligent beamstop")
 - Retractable intensity monitors behind every x-ray optical element
 - Retractable filters, crosshairs, and slits

XFEL XGMD

- Online intensity measurement
 - abs. uncertainty <10%</p>
 - rel. accuracy <1% (photoion signal statistics: for 10¹⁰ x-ray photons ≈ 10⁴ ions)
 - pulse-resolved
 - range: 10⁷ to 10¹⁵ photons/pulse
 - gas pressure 10⁻⁴ to 10⁻⁶ mbar

Electron signa

(Intensity)

Ion signal

(Position)

Electron signal

(Position)

XFEL the "new" GMD (2009)

XFEL Photo-electron spectroscopy (PES)

26

- pulse energy + polarization
- transportable setup at DESY
- proof-of-principle exp. at PETRA3 for hard x-rays (3 to 15keV)
- technical difficulties: retardation voltages, kapton windows, ...

XFEL IPM / visual BPM

[1] M. Sachwitz, A.Hofmann, S. Pauliuk, K. Tiedtke and H. Wabnitz, Ionization profile monitor to determine spatial and angular stability of FEL radiation of FLASH, TUPC090, Proceedings of EPAC08

XFEL Trajectory alignment

mean linewidth ~330µm

3rd harm.

- center of gravity determination with ~7% accuracy
- → 20 µm in 100m distance or
 0.2 µrad angular resolution

330 um

0.5

1.0

8x10

1.0

0.5

0.0

-0.5

-1.0mm -0.5 0.0 0.5

Horizontal Position

-1.0mm

Phot/s/0.1%bw/mm

Vertical Position

.0mm

1.0

-1.0mm -0.5 0.0

Horizontal Position

0.5

1.0

0mm

-1.0mm -0.5 0.0 0.5

Horizontal Position

1.0

8x10⁶

Phot/s/0.1%bw/mm²

2

-1.0mm

-0.5

0.0

Horizontal position / mm

European

(FEL Alternative position monitors

- thinned-down (5-10µm) transmissive silicon position sensitive detector
 - submicron position resolution up to 1 kHz (S/N=6.10⁴ @ 10 Hz)
 - at 12.4keV: ~95% transmission
 - lower flux limit: ~10⁷ photons/s
 - Scenario: 1 pulse / train

Transmissive x-ray beam position monitors with submicron position- and submillisecond time resolution Martin R. Fuchs, Karsten Holldack, Mark Bullough, Susanne Walsh, Colin Wilburn, Alexei Erko, Franz Schäfers, and Uwe Mueller, Rev. Sci. Instrum. 79, 063103 _2008, [local]

coded-aperture imaging

- goals: few μ m resolution, at sub-nanosecond response time (shot-to-shot profiles)
- but: not transmissive

X-ray monitor based on coded-aperture imaging for KEKB upgrade and ILC damping ring J.W. Flanagan, H. Fukuma, S. Hiramatsu, H. Ikeda, K. Kanazawa, T. Mitsuhashi, J. Urakawa (KEK/Japan), G.S. Varner, (U.Hawaii / USA), J.P. Alexander, M.A. Palmer, LEPP, Cornell U. / USA, Proceedings of EPAC08, Genoa, Italy, [web], [local]

CVD diamond photocurrent pixel detectors

A CVD-diamond based beam profile monitor for undulator radiation

C. Schulze-Briese, B. Ketterer, C. Pradervand, Ch. Brönnimann, C. David, R. Horisberger, A. Puig-Molina, H. Graafsma, NIM A 467-468 (2001) 230-234 [web], [local]

commissioning: two transparent XBPMs with μ m accuracy

European XFEL Timing

- application
 - Pump probe experiments
 - X-ray-induced dynamics
- What to measure ?
 - pulse arrival and duration
 - pulse shape
 - temporal coherence

XFEL Timing

- application
 - Pump probe experiments
 - X-ray-induced dynamics
- What to measure ?
 - pulse arrival and duration
 - pulse shape
 - temporal coherence

- How to measure ?
 - based on electrons (EO mod. effect)
 - single-pulse wavelength spectra
 - streak cameras
 - autocorrelator (beam splitter) [1]
 - laser-induced side-band generation [2]
 - THz-field-driven x-ray streak camera [3]
 - X-ray induced optical reflectivity change [4,5]

^[1] R. Mitzner, B. Siemer, M. Neeb, T. Noll, F. Siewert, S. Roling, M. Rutkowski, A.A. Sorokin, M. Richter, P. Juranic, K. Tiedtke, J. Feldhaus, W. Eberhardt and H. Zacharias, Spatio - temporal coherence of free electron laser pulses in the soft x-ray regime, Optics Express 16, 19909-19919 (2008); <u>http://dx.doi.org/10.1364/OE.16.019909</u>

^[2] P. Radcliffe, S. Düsterer, A. Azima, H. Redlin, J. Feldhaus, J. Dardis, K. Kavanagh, H. Luna, J. Pedregosa Gutierrez, P. Yeates, E. T. Kennedy, J. T. Costello, A. Delserieys, C. L. S. Lewis, R. Taïeb, A. Maquet, D. Cubaynes, and M. Meyer, Single-shot characterization of independent femtosecond extreme ultraviolet free electron and infrared laser pulses, APL 90 131108 (2007), http://dx.doi.org/10.1063/1.2716360

^[3] U. Frühling, M. Wieland, M. Gensch, T. Gebert, B. Schütte, M. Krikunova, R. Kalms, F. Budzyn, O. Grimm, J. Rossbach, E. Plönjes and M. Drescher, Single-shot terahertz-field-driven X-ray streak camera, Nature Photonics 3, 523 - 528 (2009) <u>http://dx.doi.org/10.1038/NPHOTON.2009.160</u>

^[4] C.Gahl, A.Azima, M. Beye, M. Deppe, K. Döbrich, U. Hasslinger, F. Hennies, A. Melnikov, M. Nagasono, A. Pietzsch, M. Wolf, W. Wurth, and A. Föhlisch, *A femtosecond X-ray/optical cross-correlator nature photonics*, VOL 2, p.165 (MARCH 2008), <u>http://dx.doi.org/10.1038/nphoton.2007.298</u>

^[5] M. Gabrysch, E. Marklund, J. Hajdu, D. J. Twitchen, J. Rudati, A. M. Lindenberg, C. Caleman, R. W. Falcone, T. Tschentscher, K. Moffat, P. H. Bucksbaum, J. Als-Nielsen, A. J. Nelson, D. P. Siddons, P. J. Emma, P. Krejcik, H. Schlarb, J. Arthur, S. Brennan, J. Hastings, and J. Isberg, *Formation of secondary electron cascades in single-crystalline plasma-deposited diamond upon exposure to femtosecond x-ray pulses*, Journal of Applied Physics 103, 064909 (2008)

XFEL Timing

- pump-probe with CVD crystal
 - transient charge cloud
 - time-delay dependent changes in optical reflectivity

Reference: Markus Gabrysch, Jan Isberg (Uppsala University)

XFEL Summary

- European XFEL
 - project, status, challenges, diagnostics
- Collaboration with this community on diamond detectors for
 - x-ray intensity
 - x-ray position
 - timing
- Concrete wishes
 - tests of detectors at FLASH, PETRA3 ?
 - open positions

XFEL Acknowledgements

- European XFEL GmbH
- DESY
- European Union Pre-XFEL Project
- my collegues at the European XFEL (especially Altarelli and Sinn for some material used in this presentation)

36

XFEL 6 Instruments (start-up version)

	Instrument	Brief description of the instrument				
 Soft X-rays Hard X-rays 	SPB	Ultrafast Coherent Diffraction Imaging of Single Particles, Clusters, and Biomolecules – Structure determination of single particles: atomic clusters, bio-molecules, virus particles, cells.				
	MID	Materials Imaging & Dynamics –Structure determination of nano- devices and dynamics at the nanoscale.				
	FDE	Femtosecond Diffraction Experiments – Time-resolved investigations of the dynamics of solids, liquids, gases				
	HED	High Energy Density Matter – Investigation of matter under extreme conditions using hard x-ray FEL radiation, e.g. probing dense plasmas.				
	SQS	Small Quantum Systems – Investigation of atoms, ions, molecules and clusters in intense fields and non-linear phenomena.				
	SCS	Soft x-ray Coherent Scattering –Structure and dynamics of nano-systems and of non-reproducible biological objects using soft X-rays.				

37

XFEL Photon Beam Parameters

Parameter	Unit	SASE 1	SASE 2		SASE 3		
Electron energy	GeV	17.5	17.5	17.5	17.5	17.5	10.0**
Wavelength	nm	0.1	0.1	0.4	0.4	1.6	6.4
Photon energy	keV	12.4	12.4	3.1	3.1	0.8	0.2
Peak power	GW	20	20	80	80	130	135
Average power*	W	65	65	260	260	420	580
Photon beam size (FWHM)	μm	70	85	55	60	70	95
Photon beam divergence (FWHM)	µrad	1	0.84	3.4	3.4	11.4	27
Coherence time	fs	0.2	0.22	0.38	0.34	0.88	1.9
Spectral bandwidth	%	0.08	0.08	0.18	0.2	0.3	0.73
Pulse duration	fs	100	100	100	100	100	100
Photons per pulse	#	10 ¹²	10 ¹²	1.6 × 10 ¹³	1.6 × 10 ¹³	1.0× 10 ¹⁴	4.3 × 10 ¹⁴
Average flux	#/s	3.3 × 10 ¹⁶	3.3 × 10 ¹⁶	5.2 × 10 ¹⁷	5.2 × 10 ¹⁷	3.4 × 10 ¹⁸	1.4 × 10 ¹⁹
Peak brilliance	В	5.0 × 10 ³³	5.0 × 10 ³³	2.2 × 10 ³³	2.0 × 10 ³³	5.0 × 10 ³²	0.6 × 10 ³²
Average brilliance*	В	1.6 × 10 ²⁵	1.6 × 10 ²⁵	7.1 × 10 ²⁴	6.4 × 10 ²⁴	1.6 × 10 ²⁴	2.0 × 10 ²³

European

XFEL Today's state of the art

FLASH – Ultraviolet and soft x-ray FEL user facility in Hamburg (down to $\lambda \sim 6.5$ nm) 10¹² Ph/pulse

- SCSS Test Accelerator Ultraviolet and soft x-ray FEL user facility at Spring 8 (λ ~ 30 60 nm)
- SPPS (Sub-ps Pulse Source) Stanford, operating 2003-2006, spontaneous emission from conventional x-ray undulator of ultrashort (<100 fs) electron bunches from SLAC Linac 10⁶ Ph/pulse
- First beam at 0.15 nm from LCLS (Linac Coherent Light Source at SLAC) on April 10, 2009; first experiments since
 October 1st 10¹² Ph/pulse

from: Tiedtke et al., Journal of Applied Physics 103, 094511 (2008)

XFEL GMD @ FLASH

[6-51] R. Klein et al., Synchrotron Radiation News 15 (2002) 23.[6-52] K. Tiedtke et al., Gas detectors for x-ray lasers, J. Appl. Phys. 103, 094511 (2008)

European XFEL RGXBPM

see TDR 07/2006

XFEL Photon beam properties

- Geometry
 - Center Position
 - Transverse Dimension
 - Divergence
 - longitudinal focus position
 - pointing vector
- Photon energy
 - Pulse energy
 - energy spread / bandwidth
- Intensity (# of photons per pulse)
 - max. pulse intensity
 - pulse shape
- Timing
 - Pulse duration
 - Pulse arrival time
- Polarization
 - lin. / horiz.
 - right / left circ.
- Coherence

Wavefront

- transverse
- Iongitudinal ?

 $w_0 = 70 \ \mu m$ size: spont.rad. (33 segments, N=4620, i=1): divergence: $\Theta = 1 \mu rad$ spont.rad. (1 segment, N=140,i=1): $1 + \frac{K^2}{2}$ Θ_{cen} $\Theta = 1.1 \,\mu rad \,(\sigma)$ $\Theta = 6.3 \,\mu rad(\sigma)$ = $\gamma^* \sqrt{iN}$ $\gamma \sqrt{iN}$ Θ = 2.57 µrad (FWHM) $\Theta = 14.7 \,\mu rad (FWHM)$ contains spectral bandwidth: $\frac{\Delta\lambda}{\lambda} = \frac{1}{iN}$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-x_0)^2}{2\sigma^2}\right]$$

FWHM = $2\sqrt{2\ln 2} \sigma \approx 2.35482 \sigma$