

Early Diamond-on-Iridium (DoI) samples

Elèni Berdermann GSI, Helmholtz Zentrum für Schwerionenforschung

Contributing to these studies

GSI - DETECTOR LABORATORY

- Mircea Ciobanu
- MD Shahinur Rahman
- Carmen Simons
- Michael Träger
- 🗆 EBe
- GSI ACCELERATOR HF
- Peter Moritz
 - GSI TARGET LABORATORY
- Annett Hübner
- Birgit Kindler
- Bettina Lommel
- Willy Hartmann

UNIVERSITY OF AUGSBURG

- Stefan Dunst
- Stefan Gsell
- Matthias Schreck
- Christian Stehl

Introduction

- Bulk and surface structure
- Electronic properties
 - > Dark conductivity
 - Timing signals
 - Charge Collection Efficiency (CCE)
 - > Homogeneity of the signal response
- Summary and conclusions

Introduction

Motivation

Radiation hard, ultra-fast, large-area diamond tracking and ToF sensors of better homogeneity than pcCVDD

Requirements

> Homogeneous, high-mobility detector material

 δx , $\delta y \approx 3 - 100 \ \mu m$; $\sigma_{ToF} \le 50 \ ps$; SPR $\approx 10^7 - 10^8$ ions/s

> High charge-collection efficiency (CCE)

§ good S/N ratio for relativistic light ions and protons

Dia/Ir/YSZ/Si(001): (cube on cube)

1st CARAT workshop, DEC_09

Bulk Structure Birefringence imaging

Stefan Dunst, Uni Augsburg; Michael Träger, Carmen Simons, GSI (DL)

Surface structure (AFM imaging

Stefan Dunst, Uni Augsburg

1st CARAT workshop, DEC_09

Metallization by sputtering (Ti-Pt-Au)

B. Lommel, A. Hübner et al. GSI (TL)

4-sector electrode on growth side

Bottom view on '1st' Ir layer

Electronic properties

IV characteristics of the different CVDD types

The lowest dark conductivity has been measured for Dia-on-Iridium.

1st CARAT workshop, DEC_09

Electronic properties – dark conductivity Dark conductivity studies \longrightarrow MD Shahinur Rahman, GSI MC PAD with DoI549a

1st CARAT workshop, DEC_09

Electronic properties - dark conductivity

Dark conductivity studies with DoI549a

MD Shahinur Rahman, GSI MC PAD

CHECK OHMIC and SCL CONDUCTION

<u>Electronic properties - dark conductivity</u>

1st CARAT workshop, DEC_09

Detector setup for a-ToF measurements

main pcb back side

conductive rubber

main pcb front side

No lpha-collimator in this case

1st CARAT workshop, DEC_09

²⁴¹Am- α -induced transient current signals

'SINGLE-CARRIER' DRIFT IN THE 'SMALL-

amplitudes (on 50 Ω) comparable to homoepitaxial diamond.

1st CARAT workshop, DEC_09

<u> Timing signal characteristics – DoI 724b</u>

α -source, DBAII, and +HV on growth side

t-axis: 500ps/div

Early Diamond-on-Iridium (Dol) samples

16 $\mu A \approx 100$ mV on 50 Ω (at DBA gain 122.5)

SIGNALS HOLE DRIFT

Timing signal characteristics - DoI724b

α -source, DBAII, and - HV on growth side

t-axis: 500ps/div

Early Diamond-on-Iridium (DoI) samples

100 mV on 50Ω (at DBA gain 122.5)

n

FA

19

Charge collection efficiency (CCE)

Summary and conclusions

- Very low dark conductivity; order of $10^{-13}A$ at $4V/\mu m$
 - High activation energy E^{ac} = 1.6eV
 - Schottky conduction
- ♦ CCE_α ≈ 40%
- Extremely fast timing signals; FWHM << 500ps; rt< 200ps no really suitable electronics available for
- \blacklozenge Timing α -amplitudes as high as of best single-crystals
- Energy resolution $\delta E/E < 20\%$

NEXT STEPS

- Signal simulations and FEE developments
- → Heavy-ion beam tests in spring 2010
- Preparation of tools and assembly techniques for large-area strip sensors

MERRY CHRISTMAS and HAPPY NEW YEAR !!!

1st CARAT workshop, DEC 2009

CARAT – Advanced Diamond Detectors